Skip to main content

Polymer Membranes for Wastewater Treatment

  • Chapter
  • First Online:
Advanced Removal Techniques for Dye-containing Wastewaters

Abstract

In the present running century, a most challenging and serious problem for the world is to provide pure and clean water to the ever-increasing population. Among the various wastewater treatment technologies, membrane technology dominates mainly for two reasons, cost-effectiveness and enhanced efficiencies. Furthermore, among the various membranes, the polymermembranes present outstanding economical and practical applications in the treatment of wastewater coming out of different industries and markets. Polymer membranes are extensively applied for water softening, desalination, softening of municipal wastewater, purification of industrial wastewater and for ultra-pure water production. In the present chapter, various membranes were discussed for the elimination of different kinds of positive- and negative-charged dyes from aqueous solutions. As a result of having fascinating properties, the polymer membranes may provide new perspectives in the improvement of some novel as well as smart polymer membranes for the remediation of various contaminated water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh N, Nagpal G, Agrawal S (2018) Water purification by using adsorbents: a review. Environ Technolo Innov 11:187–240

    Article  Google Scholar 

  2. Ahmad A et al (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5(39):30801–30818

    Article  CAS  Google Scholar 

  3. Madaeni S, Ghaemi N, Rajabi H (2015) Advances in polymeric membranes for water treatment. In: Advances in membrane technologies for water treatment. Elsevier, p 3–41

    Google Scholar 

  4. Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168(2–3):806–812

    Article  CAS  Google Scholar 

  5. Bazin I et al (2012) Estrogenic and anti-estrogenic activity of 23 commercial textile dyes. Ecotoxicol Environ Saf 85:131–136

    Article  CAS  Google Scholar 

  6. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27(14):R713–R715

    Article  CAS  Google Scholar 

  7. Liang C-Z et al (2014) Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J Membr Sci 469:306–315

    Article  CAS  Google Scholar 

  8. Dutta M, Bhattacharjee S, De S (2020) Separation of reactive dyes from textile effluent by hydrolyzed polyacrylonitrile hollow fiber ultrafiltration quantifying the transport of multicomponent species through charged membrane pores. Sep Purif Technol 234:

    Article  CAS  Google Scholar 

  9. Arefi-Oskoui S et al (2019) A review on the applications of ultrasonic technology in membrane bioreactors. Ultrason Sonochem 58:

    Article  CAS  Google Scholar 

  10. Yang Z et al (2019) A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 11(8):1252

    Article  CAS  Google Scholar 

  11. Zhao C et al (2011) Polymeric pH-sensitive membranes—a review. Prog Polym Sci 36(11):1499–1520

    Article  CAS  Google Scholar 

  12. Bai H et al (2016) Adsorption dynamics, diffusion and isotherm models of poly (NIPAm/LMSH) nanocomposite hydrogels for the removal of anionic dye Amaranth from an aqueous solution. Appl Clay Sci 124:157–166

    Article  CAS  Google Scholar 

  13. Yamada K et al (2000) Chitosan based water-resistant adhesive. Analogy to mussel glue. Biomacromolecules 1(2):252–258

    Article  CAS  Google Scholar 

  14. Zhang G et al (2019) Bio-inspired underwater superoleophobic PVDF membranes for highly-efficient simultaneous removal of insoluble emulsified oils and soluble anionic dyes. Chem Eng J 369:576–587

    Article  CAS  Google Scholar 

  15. Zhang J et al (2015) Mussel and fish scale-inspired underwater superoleophobic kapok membranes for continuous and simultaneous removal of insoluble oils and soluble dyes in water. J Mater Chem A 3(36):18475–18482

    Article  CAS  Google Scholar 

  16. Lv C et al (2019) Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal. J Colloid Interface Sci 556:492–502

    Article  CAS  Google Scholar 

  17. Chen S et al (2018) One-step electrospinning of negatively-charged polyethersulfone nanofibrous membranes for selective removal of cationic dyes. J Taiwan Inst Chem Eng 82:179–188

    Article  CAS  Google Scholar 

  18. Kim SJ, Park WH (2020) Polydopamine-and polyDOPA-coated electrospun poly (vinyl alcohol) nanofibrous membranes for cationic dye removal. Polym Test, 106627

    Google Scholar 

  19. Fu J et al (2016) Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. J Colloid Interface Sci 461:292–304

    Article  CAS  Google Scholar 

  20. Fu J et al (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61

    Article  CAS  Google Scholar 

  21. Xu Y et al (2019) Functionalized polyethersulfone nanofibrous membranes with ultra-high adsorption capacity for organic dyes by one-step electrospinning. J Colloid Interface Sci 533:526–538

    Article  CAS  Google Scholar 

  22. Li C et al (2018) Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. Int J Biol Macromol 106:768–774

    Article  CAS  Google Scholar 

  23. Yazdi MG et al (2018) Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. RSC Adv 8(43):24588–24598

    Article  CAS  Google Scholar 

  24. Akbari A, Sheshdeh FJ, Jabbari V (2012) Novel nanofiberous membrane fabricated via electrospinning of wastage fuzzes of mechanized carpet used for dye removal of the carpet dyeing wastewater. J Environ Sci Health Part A 47(6):847–853

    Article  CAS  Google Scholar 

  25. Wang Q et al (2012) Removal of a cationic dye by adsorption/photodegradation using electrospun PAN/O-MMT composite nanofibrous membranes coated with. Int J Photoenergy 2012

    Google Scholar 

  26. Hasanzadeh M, Hadavi MB (2013) Electrospun nanofibrous membranes as potential adsorbents for textile dye removal-a review

    Google Scholar 

  27. Chiu H et al (2011) Fabrication of electrospun polyacrylonitrile ion-exchange membranes for application in lysozyme adsorption. Express Polym Lett 5:308–17

    Google Scholar 

  28. Yang M-C, Lin W-C (2002) Surface modification and blood compatibility of polyacrylonitrile membrane with immobilized chitosan–heparin conjugate. J Polym Res 9(3):201–206

    Article  CAS  Google Scholar 

  29. Cheah WY et al (2019) Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int J Biol Macromol 126:569–577

    Article  CAS  Google Scholar 

  30. Ng I-S et al (2020) Antibacterial efficacy of chitosan-and poly (hexamethylene biguanide)-immobilized nanofiber membrane. Int J Biol Macromol

    Google Scholar 

  31. Show PL et al (2020) Batch and dynamic adsorption of lysozyme from chicken egg white on dye-affinity nanofiber membranes modified by ethylene diamine and chitosan. Int J Biol Macromol 162:1711–1724

    Article  CAS  Google Scholar 

  32. Zhang D-H et al (2011) Effect of hydrophobic/hydrophilic characteristics of magnetic microspheres on the immobilization of BSA. Colloids Surf B 82(2):302–306

    Article  CAS  Google Scholar 

  33. Ma Z, Kotaki M, Ramakrishna S (2006) Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: a novel affinity membrane. J Membr Sci 272(1–2):179–187

    Article  CAS  Google Scholar 

  34. Avramescu M, Sager W, Wessling M (2003) Functionalised ethylene vinyl alcohol copolymer (EVAL) membranes for affinity protein separation. J Membr Sci 216(1–2):177–193

    Article  CAS  Google Scholar 

  35. Conder J, Hayek B (2000) Adsorption kinetics and equilibria of bovine serum albumin on rigid ion-exchange and hydrophobic interaction chromatography matrices in a stirred cell. Biochem Eng J 6(3):215–223

    Article  CAS  Google Scholar 

  36. Alpat SK et al (2008) The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite. J Hazard Mater 151(1):213–220

    Article  CAS  Google Scholar 

  37. Huong DTM et al (2020) Removal of cationic dye waste by nanofiber membrane immobilized with waste proteins. Int J Biol Macromol 164:3873–3884

    Article  CAS  Google Scholar 

  38. Batmaz R et al (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21(3):1655–1665

    Article  CAS  Google Scholar 

  39. Chan CH et al (2015) Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. RSC Adv 5(24):18204–18212

    Article  CAS  Google Scholar 

  40. dos Santos Silva L et al (2018) Potential of cellulose functionalized with carboxylic acid as biosorbent for the removal of cationic dyes in aqueous solution. Molecules 23(4):743

    Article  CAS  Google Scholar 

  41. Liu L et al (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3(3):432–442

    Article  CAS  Google Scholar 

  42. Mishra RK, Sabu A, Tiwari SK (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. J Saudi Chem Soc 22(8):949–978

    Article  CAS  Google Scholar 

  43. Zhang G et al (2014) Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent. J Environ Sci 26(5):1203–1211

    Article  CAS  Google Scholar 

  44. Gorgieva S, Trček J (2019) Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials 9(10):1352

    Article  CAS  Google Scholar 

  45. Lu M et al (2015) Thermodynamics and kinetics of bacterial cellulose adsorbing persistent pollutant from aqueous solutions. Chem Res Chin Univ 31(2):298–302

    Article  CAS  Google Scholar 

  46. Khamkeaw A et al (2019) Activated carbon from bacterial cellulose as an effective adsorbent for removing dye from aqueous solution. Sep Sci Technol 54(14):2180–2193

    Article  CAS  Google Scholar 

  47. Jamal F et al (2011) Azo and anthraquinone dye decolorization in relation to its molecular structure using soluble Trichosanthes dioica peroxidase supplemented with redox mediator. Catal Commun 12(13):1218–1223

    Article  CAS  Google Scholar 

  48. Maleš L et al (2020) Efficiency of differently processed membranes based on cellulose as cationic dye adsorbents. Nanomaterials 10(4):642

    Article  CAS  Google Scholar 

  49. Sen TK, Afroze S, Ang H (2011) Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut 218(1–4):499–515

    Article  CAS  Google Scholar 

  50. Gorgieva S, Hribernik S (2019) Microstructured and degradable bacterial cellulose-gelatin composite membranes: mineralization aspects and biomedical relevance. Nanomaterials 9(2):303

    Article  CAS  Google Scholar 

  51. Broadbent AD (2001) Basic principles of textile coloration, society of dyers and colorists. West Yorkshire, UK

    Google Scholar 

  52. Li S et al (2015) SAPO-34 Membranes for N2/CH4 separation: preparation, characterization, separation performance and economic evaluation. J Membr Sci 487:141–151

    Article  CAS  Google Scholar 

  53. Li S, Falconer JL, Noble RD (2008) SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio. Microporous Mesoporous Mater 110(2–3):310–317

    Article  CAS  Google Scholar 

  54. Liu T-Y et al (2015) Fabrication of a thin film nanocomposite hollow fiber nanofiltration membrane for wastewater treatment. J Membr Sci 488:92–102

    Article  CAS  Google Scholar 

  55. Vatanpour V, Yekavalangi ME, Safarpour M (2016) Preparation and characterization of nanocomposite PVDF ultrafiltration membrane embedded with nanoporous SAPO-34 to improve permeability and antifouling performance. Sep Purif Technol 163:300–309

    Article  CAS  Google Scholar 

  56. Van der Bruggen B et al (1999) Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J Membr Sci 156(1):29–41

    Article  Google Scholar 

  57. Emadzadeh D et al (2015) A novel thin film nanocomposite reverse osmosis membrane with superior anti-organic fouling affinity for water desalination. Desalination 368:106–113

    Article  CAS  Google Scholar 

  58. Ghaemi N, Safari P (2018) Nano-porous SAPO-34 enhanced thin-film nanocomposite polymeric membrane: simultaneously high water permeation and complete removal of cationic/anionic dyes from water. J Hazard Mater 358:376–388

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Higher Education Commission of Pakistan is gratefully acknowledged for financial support under the Project Number 7309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luqman Ali Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S.A., Shah, L.A. (2021). Polymer Membranes for Wastewater Treatment. In: Muthu, S.S., Khadir, A. (eds) Advanced Removal Techniques for Dye-containing Wastewaters. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-3164-1_6

Download citation

Publish with us

Policies and ethics