Skip to main content

Tailoring Ultralight Hybrid Aerogels from Novel Porous Materials for the Removal of Dyes from Water

  • Chapter
  • First Online:
Advanced Removal Techniques for Dye-containing Wastewaters

Abstract

Dyes are extensively used as colouring agents and are significantly beneficial to a variety of textile, leather, plastic, and paper manufacturing industries. However, dyes belong to a major class of organic molecules that are commonly contaminating water sources triggering major environmental hazards. The poor biodegradation abilities of these dyes due to the complex molecular structure make them pseudo-persistent in the environment. Additionally, exposure to dyes can be hazardous to human health and can cause carcinogenic and mutagenic effects. Therefore, the elimination of such toxic dyes from contaminated wastewater is of great prominence. Nevertheless, advances in water treatment techniques have steered several evolutionary methods for the removal of dyes from water. Several techniques such as adsorption, membrane separation, photocatalytic, biological treatment, and many others are routinely explored for water decontamination. However, such new-generation dye removal techniques mandate novel materials to reprocess contaminated water. Aerogels are one such advanced class of ultralight porous materials that are lately used for dye adsorption. Constructed by open porous networks, aerogels offer extremely low densities, large empty spaces, and macroporous structures. Such intriguing properties provide relaxed diffusion kinetics and admittance to the active sites for adsorption. Additionally, by coupling various porous materials, lightweight aerogels are fabricated to resolve handling and recovery issues from contaminated wastewaters. This chapter proposes to highlight some of the major progressions made towards the use of ultralight aerogels for the removal of various toxic dyes. Eventually, this review categorises aerogels developed for dye elimination into two main classifications, specifically, the biopolymer-based aerogels, and carbon-based aerogels. Progressions made by these categories have been thoroughly reviewed with special emphasis on the advantages and future perspectives have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owa F (2013) Water pollution: sources, effects, control and management. Mediterr J Soc Sci 4:65

    Google Scholar 

  2. Sokolowska-Gajda J, Freeman HS, Reife A (1996) Synthetic dyes based on environmental considerations. Part 2: iron complexes formazan dyes. Dyes pigment 30:1–20

    Google Scholar 

  3. Fathima JB, Pugazhendhi A, Oves M, Venis R (2018) Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes. J Mol Liq 260:1–8

    Article  CAS  Google Scholar 

  4. Kabdaşli I, Tünay O, Orhon D (1999) Wastewater control and management in a leather tanning district. Water Sci Technol 40:261–267

    Article  Google Scholar 

  5. Hasanpour M, Hatami M (2020) Photocatalytic performance of aerogels for organic dyes removal from wastewaters: review study. J Mol Liq, 113094

    Google Scholar 

  6. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat M (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 193:24–34

    Article  CAS  Google Scholar 

  7. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290

    Article  Google Scholar 

  8. Kadirvelu K, Kavipriya M, Karthika C, Radhika M, Vennilamani N, Pattabhi S (2003) Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour Technol 87:129–132

    Article  CAS  Google Scholar 

  9. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  10. Sriram G, Kigga M, Uthappa UT, Rego RM, Thendral V, Kumeria T, Jung H-Y, Kurkuri MD (2020) Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: a review. Adv Colloid Interface Sci 282:102198

    Google Scholar 

  11. Sriram G, Uthappa UT, Rego RM, Kigga M, Kumeria T, Jung H-Y, Kurkuri MD (2020) Ceria decorated porous diatom-xerogel as an effective adsorbent for the efficient removal of Eriochrome Black T. Chemosphere 238:124692

    Google Scholar 

  12. Hegde RM, Rego RM, Potla KM, Kurkuri MD, Kigga M (2020) Bio-inspired materials for defluoridation of water: a review. Chemosphere 253:126657

    Google Scholar 

  13. Sriram G, Uthappa UT, Kigga M, Jung H-Y, Altalhi T, Brahmkhatri V, Kurkuri MD (2019) Xerogel activated diatoms as an effective hybrid adsorbent for the efficient removal of malachite green. New J Chem 43:3810–3820

    Article  CAS  Google Scholar 

  14. Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5:30801–30818

    Article  CAS  Google Scholar 

  15. Riera-Torres M, Gutiérrez-Bouzán C, Crespi M (2010) Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 252:53–59

    Article  CAS  Google Scholar 

  16. Uthappa UT, Sriram G, Arvind OR, Kumar S, Ho Young J, Neelgund GM, Losic D, Kurkuri MD (2020) Engineering MIL-100(Fe) on 3D porous natural diatoms as a versatile high performing platform for controlled isoniazid drug release, Fenton’s catalysis for malachite green dye degradation and environmental adsorbents for Pb2+ removal and dyes. Appl Surf Sci 528:146974

    Google Scholar 

  17. Uthappa UT, Kigga M, Sriram G, Ajeya KV, Jung H-Y, Neelgund GM, Kurkuri MD (2019) Facile green synthetic approach of bio inspired polydopamine coated diatoms as a drug vehicle for controlled drug release and active catalyst for dye degradation. Microporous Mesoporous Mater 288:109572

    Google Scholar 

  18. Kandisa RV, Saibaba KN, Shaik KB, Gopinath R (2016) Dye removal by adsorption: a review. J Bioremediation Biodegradation 7

    Google Scholar 

  19. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014

    Google Scholar 

  20. Kaykhaii M, Sasani M, Marghzari S (2018) Removal of dyes from the environment by adsorption process. Chem Mater Eng 6:31–35

    Article  CAS  Google Scholar 

  21. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    Article  CAS  Google Scholar 

  22. Rego RM, Kuriya G, Kurkuri MD, Kigga M (2021) MOF based engineered materials in water remediation: recent trends. J Hazardous Mater 403:123605

    Google Scholar 

  23. Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118

    Article  CAS  Google Scholar 

  24. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599

    Article  CAS  Google Scholar 

  25. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4266

    Article  CAS  Google Scholar 

  26. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  CAS  Google Scholar 

  27. Zuo L, Zhang Y, Zhang L, Miao Y-E, Fan W, Liu T (2015) Polymer/carbon-based hybrid aerogels: preparation, properties and applications. Materials 8:6806–6848

    Article  CAS  Google Scholar 

  28. Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chemie Intern Edition 37:22–45

    Article  Google Scholar 

  29. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:409310

    Google Scholar 

  30. Capadona LA, Meador MAB, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible, low-density polymer crosslinked silica aerogels. Polymer 47:5754–5761

    Article  CAS  Google Scholar 

  31. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  32. Mulik S, Sotiriou-Leventis C, Leventis N (2007) Time-efficient acid-catalyzed synthesis of resorcinol− formaldehyde aerogels. Chem Mater 19:6138–6144

    Article  CAS  Google Scholar 

  33. Hdach H, Woignier T, Phalippou J, Scherer G (1990) Effect of aging and pH on the modulus of aerogels. J Non-Cryst Sol 121:202–205

    Article  CAS  Google Scholar 

  34. Zhang J, Cao Y, Feng J, Wu P (2012) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116:8063–8068

    Article  CAS  Google Scholar 

  35. Einarsrud M-A, Nilsen E, Rigacci A, Pajonk GM, Buathier S, Valette D, Durant M, Chevalier B, Nitz P, Ehrburger-Dolle F (2001) Strengthening of silica gels and aerogels by washing and aging processes. J Non-Cryst Sol 285:1–7

    Article  CAS  Google Scholar 

  36. Dorcheh AS, Abbasi M (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10–26

    Article  CAS  Google Scholar 

  37. Hæreid S, Anderson J, Einarsrud M, Hua D, Smith D (1995) Thermal and temporal aging of TMOS-based aerogel precursors in water. J Non-Cryst Sol 185:221–226

    Article  Google Scholar 

  38. Zha J, Roggendorf H (1991) Sol–gel science, the physics and chemistry of sol–gel processing, Edited by Brinker CJ, Scherer GW, Academic Press, Boston 1990, xiv, 908 pp, bound—ISBN 0-12-134970-5. Adv Mater 3:522–522

    Google Scholar 

  39. Iswar S, Malfait WJ, Balog S, Winnefeld F, Lattuada M, Koebel MM (2017) Effect of aging on silica aerogel properties. Microporous Mesoporous Mater 241:293–302

    Article  CAS  Google Scholar 

  40. Omranpour H, Motahari S (2013) Effects of processing conditions on silica aerogel during aging: role of solvent, time and temperature. J Non-Cryst Sol 379:7–11

    Article  CAS  Google Scholar 

  41. Davis PJ, Brinker CJ, Smith DM (1992) Pore structure evolution in silica gel during aging/drying I. Temporal and thermal aging. J Non-Cryst Sol 142:189–196

    Article  CAS  Google Scholar 

  42. Nadargi DY, Latthe SS, Rao AV (2009) Effect of post-treatment (gel aging) on the properties of methyltrimethoxysilane based silica aerogels prepared by two-step sol–gel process. J Sol–Gel Sci Technol 49:53–59

    Article  CAS  Google Scholar 

  43. Strøm R-A, Masmoudi Y, Rigacci A, Petermann G, Gullberg L, Chevalier B, Einarsrud M-A (2007) Strengthening and aging of wet silica gels for up-scaling of aerogel preparation. J Sol–Gel Sci Technol 41:291–298

    Article  CAS  Google Scholar 

  44. Lee J-H, Park S-J (2020) Recent advances in preparations and applications of carbon aerogels: a review. Carbon 163:1–18

    Article  CAS  Google Scholar 

  45. García-González C, Camino-Rey M, Alnaief M, Zetzl C, Smirnova I (2012) Supercritical drying of aerogels using CO2: effect of extraction time on the end material textural properties. J Supercrit Fluids 66:297–306

    Article  CAS  Google Scholar 

  46. Ye S, Feng J, Wu P (2013) Highly elastic graphene oxide–epoxy composite aerogels via simple freeze-drying and subsequent routine curing. J Mater Chem A 1:3495–3502

    Article  CAS  Google Scholar 

  47. He F, Sui C, He X, Li M (2015) Facile synthesis of strong alumina–cellulose aerogels by a freeze-drying method. Mater Lett 152:9–12

    Article  CAS  Google Scholar 

  48. Maleki H, Durães L, Portugal A (2015) Development of mechanically strong ambient pressure dried silica aerogels with optimized properties. J Phys Chem C 119:7689–7703

    Google Scholar 

  49. Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28:121–191

    Article  CAS  Google Scholar 

  50. Barrios E, Fox D, Li Sip YY, Catarata R, Calderon JE, Azim N, Afrin S, Zhang Z, Zhai L (2019) Nanomaterials in advanced, high-performance aerogel composites: a review. Polymers 11:726

    Google Scholar 

  51. Song J, Guo X, Zhang J, Chen Y, Zhang C, Luo L, Wang F, Wang G (2019) Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. J Mater Chem A 7:6507–6513

    Article  CAS  Google Scholar 

  52. Fricke J, Emmerling A (1992) Aerogels—Preparation, properties, applications, Chemistry, Spectroscopy and Applications of Sol-Gel Glasses. Springer, pp 37–87

    Google Scholar 

  53. Ye S, Liu Y, Feng J (2017) Low-density, mechanical compressible, water-induced self-recoverable graphene aerogels for water treatment. ACS Appl Mater Interfaces 9:22456–22464

    Article  CAS  Google Scholar 

  54. Zhu J, Jiang J, Jamil MI, Hou Y, Zhan X, Chen F, Cheng D, Zhang Q (2020) Biomass-derived, water-induced self-recoverable composite aerogels with robust superwettability for water treatment. Langmuir 36:10960–10969

    Article  CAS  Google Scholar 

  55. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184

    Article  CAS  Google Scholar 

  56. Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C (2018) Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12:4462–4468

    Article  CAS  Google Scholar 

  57. Zong L, Yang Y, Yang H, Wu X (2020) Shapeable aerogels of metal–organic-frameworks supported by aramid nanofibrils for efficient adsorption and interception. ACS Appl Mater Interfaces 12:7295–7301

    Article  CAS  Google Scholar 

  58. Gupta VK, Agarwal S, Singh P, Pathania D (2013) Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions. Carbohydr Polym 98:1214–1221

    Article  CAS  Google Scholar 

  59. Long L-Y, Weng Y-X, Wang Y-Z (2018) Cellulose aerogels: synthesis, applications, and prospects. Polymers 10:623

    Article  CAS  Google Scholar 

  60. He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JH (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804

    Article  CAS  Google Scholar 

  61. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    Article  CAS  Google Scholar 

  62. Jiang F, Dinh DM, Hsieh Y-L (2017) Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels. Carbohydr Polym 173:286–294

    Article  CAS  Google Scholar 

  63. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165

    Article  CAS  Google Scholar 

  64. Yang H, Sheikhi A, Van De Ven TG (2016) Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 32:11771–11779

    Article  CAS  Google Scholar 

  65. Carpenter AW, de Lannoy C-F, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287

    Article  CAS  Google Scholar 

  66. Tang J, Song Y, Zhao F, Spinney S, da Silva Bernardes J, Tam KC (2019) Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydr Polym 208:404–412

    Google Scholar 

  67. de Luna MS, Ascione C, Santillo C, Verdolotti L, Lavorgna M, Buonocore G, Castaldo R, Filippone G, Xia H, Ambrosio L (2019) Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydr Polym 211:195–203

    Article  CAS  Google Scholar 

  68. Nia MH, Tavakolian M, Kiasat AR, van de Ven TG (2020) Hybrid aerogel nanocomposite of dendritic colloidal silica and hairy nanocellulose: an effective dye adsorbent. Langmuir 36:11963–11974

    Article  CAS  Google Scholar 

  69. Lingamdinne LP, Koduru JR, Karri RR (2019) A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J Environ Manag 231:622–634

    Article  CAS  Google Scholar 

  70. Zhao Y, Hu C, Song L, Wang L, Shi G, Dai L, Qu L (2014) Functional graphene nanomesh foam. Energy Environ Sci 7:1913–1918

    Article  CAS  Google Scholar 

  71. Chen L, Li Y, Du Q, Wang Z, Xia Y, Yedinak E, Lou J, Ci L (2017) High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohydr Polym 155:345–353

    Article  CAS  Google Scholar 

  72. Xiang C, Wang C, Guo R, Lan J, Lin S, Jiang S, Lai X, Zhang Y, Xiao H (2019) Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes. J Mater Sci 54:1872–1883

    Article  CAS  Google Scholar 

  73. Yan M, Huang W, Li Z (2019) Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water. Int J biol macromol 136:927–935

    Article  CAS  Google Scholar 

  74. Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689

    Article  CAS  Google Scholar 

  75. Wu X, Wu D, Fu R, Zeng W (2012) Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal. Dyes Pigment 95:689–694

    Article  CAS  Google Scholar 

  76. Ye S, Jin W, Huang Q, Hu Y, Li Y, Li B (2016) KGM-based magnetic carbon aerogels matrix for the uptake of methylene blue and methyl orange. Int J Biol Macromol 92:1169–1174

    Article  CAS  Google Scholar 

  77. Li Z, Jia Z, Ni T, Li S (2017) Adsorption of methylene blue on natural cotton based flexible carbon fiber aerogels activated by novel air-limited carbonization method. J Mol Liq 242:747–756

    Article  CAS  Google Scholar 

  78. Zhao Y, Shi J, Wang X, Li W, Wu Y, Jiang Z (2020) Biomass@ MOF-derived carbon aerogels with a hierarchically structured surface for treating organic pollutants. Ind Eng Chem Res

    Google Scholar 

  79. Tabrizi N, Yavari M (2015) Methylene blue removal by carbon nanotube-based aerogels. Chem Eng Res Des 94:516–523

    Article  CAS  Google Scholar 

  80. Liu C, Liu H, Xu A, Tang K, Huang Y, Lu C (2017) In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. J Alloy Compd 714:522–529

    Article  CAS  Google Scholar 

  81. Tian X, Zhu H, Meng X, Wang J, Zheng C, Xia Y, Xiong Z (2020) Amphiphilic calcium alginate carbon aerogels: broad-spectrum adsorbents for ionic and solvent dyes with multiple functions for decolorized oil–water separation. ACS Sustain Chem Eng 8:12755–12767

    Article  CAS  Google Scholar 

  82. Yu M, Li J, Wang L (2017) KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem Eng J 310:300–306

    Article  CAS  Google Scholar 

  83. Yu M, Han Y, Li J, Wang L (2018) Magnetic N-doped carbon aerogel from sodium carboxymethyl cellulose/collagen composite aerogel for dye adsorption and electrochemical supercapacitor. Int J Biol Macromol 115:185–193

    Article  CAS  Google Scholar 

  84. Kaith BS, Dhiman J, Bhatia JK (2015) Preparation and application of grafted Holarrhena antidycentrica fiber as cation exchanger for adsorption of dye from aqueous solution. J Environ Chem Eng 3:1038–1046

    Article  CAS  Google Scholar 

  85. Jiao Y, Wan C, Li J (2016) Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent. Mater Des 107:26–32

    Article  CAS  Google Scholar 

  86. Wan C, Jiao Y, Qiang T, Li J (2017) Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding. Carbohydr Polym 156:427–434

    Article  CAS  Google Scholar 

  87. Dhaka S, Kumar R, Deep A, Kurade MB, Ji S-W, Jeon B-H (2019) Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev 380:330–352

    Article  CAS  Google Scholar 

  88. Thines R, Mubarak N, Nizamuddin S, Sahu J, Abdullah E, Ganesan P (2017) Application potential of carbon nanomaterials in water and wastewater treatment: a review. J Taiwan Inst Chem Eng 72:116–133

    Article  CAS  Google Scholar 

  89. Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596

    Article  CAS  Google Scholar 

  90. Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T (2011) Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. J Hazardous Mater 186:921–931

    Article  CAS  Google Scholar 

  91. Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703

    Article  CAS  Google Scholar 

  92. Cheng C, Li S, Zhao J, Li X, Liu Z, Ma L, Zhang X, Sun S, Zhao C (2013) Biomimetic assembly of polydopamine-layer on graphene: mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chem Eng J 228:468–481

    Article  CAS  Google Scholar 

  93. Liu C, Liu H, Zhang K, Dou M, Pan B, He X, Lu C (2019) Partly reduced graphene oxide aerogels induced by proanthocyanidins for efficient dye removal. Bioresour Technol 282:148–155

    Article  CAS  Google Scholar 

  94. Hou P, Xing G, Tian L, Zhang G, Wang H, Yu C, Li Y, Wu Z (2019) Hollow carbon spheres/graphene hybrid aerogels as high-performance adsorbents for organic pollution. Sep Purif Technol 213:524–532

    Article  CAS  Google Scholar 

  95. Yang Q, Lu R, Ren S, Chen C, Chen Z, Yang X (2018) Three dimensional reduced graphene oxide/ZIF-67 aerogel: effective removal cationic and anionic dyes from water. Chem Eng J 348:202–211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors recognise the provision delivered by Department of Science and Technology DST (TDP/BDTD/32/2019), India and CNMS-JAIN Deemed-to-be University, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahaveer D. Kurkuri or Madhuprasad Kigga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rego, R.M., Bhat, S.I., Kurkuri, M.D., Kigga, M. (2021). Tailoring Ultralight Hybrid Aerogels from Novel Porous Materials for the Removal of Dyes from Water. In: Muthu, S.S., Khadir, A. (eds) Advanced Removal Techniques for Dye-containing Wastewaters. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-3164-1_2

Download citation

Publish with us

Policies and ethics