Skip to main content

Part of the book series: Infosys Science Foundation Series ((ISFM))

Abstract

We developed a model for the spread of Covid-19 within a community, we paid attention to the sensitivity of the derived basic reproduction number to each model parameter. This model was extended to investigate the impact of migration between two communities on the spread of the disease. Three special cases: unidirectional migration, unrestricted bidirectional migration, and partial bidirectional migration, were considered. Covid-19 data for two Nigerian states, namely Lagos (high burden community) and Ogun (low burden community) were obtained from the website of the Nigeria Centre for Disease Control for parameter estimation and simulation. Our results show that the basic reproduction number of the original model is most sensitive to the recovery rate of symptomatic infectious individuals. From the inter-community spread model, we find that the rate of coupling plays a vital role in the control of the pandemic. Our results project the different possible scenarios based on different lockdown and infection rates in two different communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott, L., Kepler, T.B.: Model neurons: from Hodgkin-Huxley to Hopfield. In: Statistical Mechanics of Neural Networks, pp. 5–18. Springer (1990)

    Google Scholar 

  2. Adeniyi, M., Ekum, M., Iluno, C., Ogunsanya, A., Akinyemi, J., Oke, S., Matadi, M.: Dynamic model of COVID-19 disease with exploratory data analysis. Sci. African 000(e00477), 1–21 (2020)

    Google Scholar 

  3. Agusto, F.B., Bewick, S., Fagan, W.: Mathematical model of Zika virus with vertical transmission. Infect. Dis. Modell. 2(2), 244–267 (2017)

    Google Scholar 

  4. Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C.: Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PloS One 15(3), e0230405 (2020)

    Google Scholar 

  5. Arriola, L., Hyman, J.M.: Sensitivity analysis for uncertainty quantification in mathematical models. In: Hyman, J.M., Bettencourt, L.M.A., Castillo-Chavez, C. (eds.) Chowell G. Mathematical and Statistical Estimation Approaches in Epidemiology Springer, Dordrecht (2009)

    Google Scholar 

  6. Atkeson, A.: What will be the economic impact of COVID-19 in the us? Rough estimates of disease scenarios. Tech. rep, National Bureau of Economic Research (2020)

    Google Scholar 

  7. Bauch, C.T., Oraby, T.: Assessing the pandemic potential of MERS-COV. The Lancet 382(9893), 662–664 (2013)

    Google Scholar 

  8. Berge, T., Lubuma, J.S., Moremedi, G., Morris, N., Kondera-Shava, R.: a simple mathematical model for Ebola in Africa. J. Biol. Dyn. 11(1), 42–74 (2017)

    Google Scholar 

  9. Bhunu, C.P.: A mathematical analysis of alcoholism. World J. Model. Simul. 8(2), 124–134 (2012)

    MathSciNet  Google Scholar 

  10. Blake, P.A.: Historical perspectives on pandemic cholera. In: Vibrio cholerae and Cholera, American Society of Microbiology, pp. 293–295 (1994)

    Google Scholar 

  11. Bowman, C., Gumel, A., Van den Driessche, P., Wu, J., Zhu, H.: A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 67(5), 1107–1133 (2005)

    Google Scholar 

  12. Chatterjee, K., Chatterjee, K., Kumar, A., Shankar, S.: Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model. Medical Journal Armed Forces India (2020)

    Google Scholar 

  13. Cucinotta, D., Vanelli, M.: Who declares COVID-19 a pandemic. Acta bio-medica: Atenei Parmensis 91(1), 157–160 (2020)

    Google Scholar 

  14. Dansu, E.J., Seno, H.: A model for epidemic dynamics in a community with visitor subpopulation. J. Theoret. Biol. 478, 115–127 (2019)

    Article  MathSciNet  Google Scholar 

  15. De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J.: SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14(8), 523 (2016)

    Google Scholar 

  16. Diekmann, O., Heesterbeek, J.A.P., Roberts, M.G.: The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7, 873–885 (2010)

    Article  Google Scholar 

  17. Gatto, M., Bertuzzo, E., Mari, L., Miccoli, S., Carraro, L., Casagrandi, R., Rinaldo, A.: Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures. PNAS 117(19), 10484–10491 (2020)

    Google Scholar 

  18. Ghosh, S., Bhattacharya, S.: Computational model on COVID-19 pandemic using probabilistic cellular automata (2020) 2006.11270

    Google Scholar 

  19. Glass, K.: Ecological mechanisms that promote arbovirus survival: a mathematical model of Ross River virus transmission. Trans. R. Soc. Trop. Med. Hygiene 99(4), 252–260 (2005)

    Google Scholar 

  20. Gössling, S., Scott, D., Hall, C.M.: Pandemics, tourism and global change: a rapid assessment of COVID-19. J. Sustain. Tourism 1–20,(2020)

    Google Scholar 

  21. Housworth, J., Langmuir, A.D.: Excess mortality from epidemic influenza, 1957–1966. Am. J. Epidemiol. 100(1), 40–48 (1974)

    Article  Google Scholar 

  22. Ivorra, B., Ferrández, M.R., Vela-Pérez, M., Ramos, A.: Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. the case of china. Commun. Nonlinear Sci. Numer. Simul. 105303 (2020)

    Google Scholar 

  23. Johnson, N.P., Mueller, J.: Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med. 105–115, (2002)

    Google Scholar 

  24. Kapitza, S.P.: A mathematical model for global population growth. Matematicheskoe modelirovanie 4(6), 65–79 (1992)

    Google Scholar 

  25. Kareem, S.O., Ojo, K., Njah, A.: Function projective synchronization of identical and non-identical modified finance and Shimizu-Morioka systems. Pramana 79(1), 71–79 (2012)

    Google Scholar 

  26. Kolebaje, O., Popoola, O., Khan, M.A., Oyewande, O.: An epidemiological approach to insurgent population modeling with the Atangana-Baleanu fractional derivative. Chaos, Solit. Fractals 139, 109970 (2020)

    Google Scholar 

  27. Kraemer, M.U., Yang, C.H., Gutierrez, B., Wu, C.H., Klein, B., Pigott, D.M., Du Plessis, L., Faria, N.R., Li, R., Hanage, W.P., et al.: The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368(6490), 493–497 (2020)

    Google Scholar 

  28. Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R.M., Sun, F., Jit, M., Munday, J.D., et al.: Early dynamics of transmission and control of COVID-19: a mathematical modelling study. The Lancet Infect, Dis (2020)

    Google Scholar 

  29. Lanteri, D., Carco, D., Castorina, P.: How macroscopic laws describe complex dynamics: asymptomatic population and COVID-19 spreading. arXiv preprint arXiv:200312457 (2020)

  30. Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Chan, K.H., Woo, P.C., Yuen, K.Y.: Genetic characterization of betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in japanese pipistrelle: implications for the origin of the novel Middle East Respiratory Syndrome coronavirus. J. Virol. 87(15), 8638–8650 (2013)

    Google Scholar 

  31. Liu, Z., Magal, P., Seydi, O., Webb, G.: A covid-19 epidemic model with latency period. Infectious Disease Modelling 5, 323–337 (2020). https://doi.org/10.1016/j.idm.2020.03.003

    Article  Google Scholar 

  32. Möhler, L., Flockerzi, D., Sann, H., Reichl, U.: Mathematical model of influenza a virus production in large-scale microcarrier culture. Biotech. Bioeng. 90(1), 46–58 (2005)

    Google Scholar 

  33. Ndairou F, Area I, Nieto JJ, Torres DF (2020) Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons & Fractals p 109846

    Google Scholar 

  34. Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., Agha, R.: The socio-economic implications of the coronavirus and COVID-19 pandemic: a review. International Journal of Surgery (2020)

    Google Scholar 

  35. Okuonghae, D., Okuonghae, R.: A mathematical model for Lassa fever. J. Nigerian Assoc. Math. Phys. 10(1), (2006)

    Google Scholar 

  36. Organization WH, et al. (2020) Coronavirus disease 2019 (covid-19): situation report, 160

    Google Scholar 

  37. ÖZalp N, Demirci E, : A fractional order SEIR model with vertical transmission. Math. Comp. Model. 54(1–2), 1–6 (2011)

    Google Scholar 

  38. Peng L, Yang W, Zhang D, Zhuge C, Hong L (2020) Epidemic analysis of COVID-19 in china by dynamical modeling. arXiv preprint arXiv:200206563

  39. Pongsumpun, P.: Mathematical model of Dengue disease with the incubation period of virus. World Acad. Sci. Eng. Technol. 44, 328–332 (2008)

    Google Scholar 

  40. Richardson, E.T., Barrie, M.B., Kelly, J.D., Dibba, Y., Koedoyoma, S., Farmer, P.E.: Biosocial approaches to the 2013–2016 Ebola pandemic. Health Human Rights 18(1), 115 (2016)

    Google Scholar 

  41. Rossi C (2002) The role of dynamic modelling in drug abuse epidemiology. Bull. Narc. 54(1 and 2):33–44

    Google Scholar 

  42. Sahu, P.: Closure of universities due to coronavirus disease 2019 (COVID-19): impact on education and mental health of students and academic staff. Cureus 12(4), (2020)

    Google Scholar 

  43. Sharp, P.M., Hahn, B.H.: Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspect. Med. 1(1), a006841 (2011)

    Google Scholar 

  44. Shim, E., Tariq, A., Choi, W., Lee, Y., Chowell, G.: Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. (2020)

    Google Scholar 

  45. Vaillant, L., La Ruche, G., Tarantola, A., Barboza, P., et al.: Epidemiology of fatal cases associated with pandemic H1N1 influenza 2009. Eurosurveillance 14(33), 19309 (2009)

    Google Scholar 

  46. Viboud, C., Grais, R.F., Lafont, B.A., Miller, M.A., Simonsen, L.: Multinational impact of the 1968 Hong Kong influenza pandemic: evidence for a smoldering pandemic. J. Infect. Dis. 192(2), 233–248 (2005)

    Google Scholar 

  47. Wauer, J., Schwarzer, D., Cai, G., Lin, Y.: Dynamical models of love with time-varying fluctuations. Appl. Math. Comput. 188(2), 1535–1548 (2007)

    Google Scholar 

  48. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, Liu C, Yang C (2020) Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior, and Immunity

    Google Scholar 

  49. Yu, Y., Zhang, S.: The synchronization of linearly bidirectional coupled chaotic systems. Chaos, Solitons & Fractals 22(1), 189–197 (2004)

    Article  MathSciNet  Google Scholar 

  50. Zhao, S., Xu, Z., Lu, Y.: A mathematical model of Hepatitis B virus transmission and its application for vaccination strategy in China. Int. J. Epidemiol. 29(4), 744–752 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel J. Dansu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dansu, E.J., Ogunjo, S.T. (2021). Dynamics of Inter-community Spread of Covid-19. In: Agarwal, P., Nieto, J.J., Ruzhansky, M., Torres, D.F.M. (eds) Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact. Infosys Science Foundation Series(). Springer, Singapore. https://doi.org/10.1007/978-981-16-2450-6_18

Download citation

Publish with us

Policies and ethics