Skip to main content

Industrial and Commercial Importance of XLPE

  • Chapter
  • First Online:
Crosslinkable Polyethylene

Abstract

Crosslinked polyethylenes (XLPEs) have been successful to attract current active research interests both in academia and in industry for its wide range of potential and practical industrial and commercial applications. For example, XLPEs are widely used in high-voltage cable manufacture along with their applications in underground pipes for sewerage and heavy-duty tank manufactures for water-storage applications. XLPEs are also used in other areas that include—(a) packaging, (b) foams, (c) coatings, (d) adhesives, (e) automotive, glass frames and furniture-related industries. XLPE-based products have been increasingly used for different biomedical applications (such as bone implants). This current chapter will very briefly describe the industrial and commercial importance of XLPE along with a brief discussion on the different parameters that control the nature of the applications of XLPEs in selected areas. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Malpass DB (2010) Introduction to industrial polyethylene: properties, catalysts, and processes. First published 14 June 2010, Print ISBN 9780470625989, Online ISBN 9780470900468, Wiley Online Books, https://doi.org/10.1002/9780470900468

  2. Peacock A (20 Jan 2000) Handbook of polyethylene: structures: properties, and applications. CRC Press

    Google Scholar 

  3. Spalding MA, Chatterjee A (eds) (2017) Handbook of industrial polyethylene and technology: definitive guide to manufacturing, properties, processing, applications and markets set. ISBN 978-1-119-15976-6, Wiley Online Library

    Google Scholar 

  4. Kurtz S (ed) (2004) The UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices. Elsevier Academic Press, London, UK. eBook ISBN 9780323354356, Hardcover-ISBN 9780323354011

    Google Scholar 

  5. Tamboli SM, Mhaske ST, Kale DD (2004) Crossliked polyethylene. Indian J Chem Technol 11:853–864

    CAS  Google Scholar 

  6. Visakh PM, Morlanes MJM (2015) Polyethylene‐based blends, composites and nanocomposites. Scrivener Publishing LLC. First published 24 July 2015, Print ISBN 9781118831281, Online ISBN 9781118831328, https://doi.org/10.1002/9781118831328

  7. Li Lunzhi, Zhong Lisheng, Zhang Kai, Gao Jinghui, Man Xu (2018) Temperature dependence of mechanical, electrical properties and crystal structure of polyethylene blends for cable insulation. Materials (Basel) 11(10):1922

    Article  CAS  Google Scholar 

  8. Zhang K, Li L, Zhong L, Chen N, Xu M, Xie D, Chen G (2015) The mechanical properties of recyclable cable insulation materials based on thermo-plastic polyolefin blends. In: Proceedings of the 11th international conference on the properties and applications of dielectric materials (ICPADM), Sydney, Australia. 19–22 July 2015, pp 532–535

    Google Scholar 

  9. Barzin J, Azizi H, Morshedian J (2006) Preparation of silane-grafted and moisture cross-linked low density polyethylene: Part I: factors affecting performance of grafting and cross-linking. Polym Plastic Technol Eng 45(8):979–983

    Article  CAS  Google Scholar 

  10. Barzin J, Azizi H, Morshedian J (2007) Preparation of silane-grafted and moisture crosslinked low density polyethylene. Part II: electrical, thermal and mechanical properties. Polym Plastic Technol Eng 46(3):305–310

    Article  CAS  Google Scholar 

  11. Morshedian J, Hoseinpour PM (2009) Polyethylene cross-linking by two-step silane method: a review. Iran Polym J 18(2):103-128

    Google Scholar 

  12. Thomas J, Joseph B, Jose JP, Maria HJ, Main P, Rahman AA, Francis B, Ahmad Z, Thomas S (2019) Recent advances in cross-linked polyethylene-based nanocomposites for high voltage engineering applications: a critical review. Ind Eng Chem Res 58(46):20863–20879

    Google Scholar 

  13. Gao Y, Huang X, Min D, Li S, Jiang P (2019) Recyclable dielectric polymer nanocomposites with voltage stabilizer interface: toward new generation of high voltage direct current cable insulation. ACS Sustain Chem Eng 7(1):513–525

    Article  CAS  Google Scholar 

  14. Zhao Y, Choi BH, Chudnovsky A (2013) Characterization of the fatigue crack behavior of pipe grade polyethylene using circular notched specimens. Int J Fatigue 51:26–35

    Article  CAS  Google Scholar 

  15. Miao W, Zhu H, Duan T, Chen H, Wu F, Jiang L, Wang Z (2018) High-density polyethylene crystals with double melting peaks induced by ultra-high-molecular-weight polyethylene fibre. R Soc Open Sci 5:180394. https://doi.org/10.1098/rsos.180394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frank A, Pinter G, Lang RW (2009) Prediction of the remaining lifetime of polyethylene pipes after up to 30 years in use. Polym Test 28:737–745

    Article  CAS  Google Scholar 

  17. Pérez-González J, Denn MM (2001) Flow enhancement in the continuous extrusion of linear low-density polyethylene. Ind Eng Chem Res 40:4309–4316

    Article  CAS  Google Scholar 

  18. Williams JG, Hodgkinson JM, Gray A (1981) The determination of residual stresses in plastic pipe and their role in fracture. Polym Eng Sci 21:822–828

    Article  CAS  Google Scholar 

  19. Nie M, Wang Q, Bai SB, Li Z, Huang A (2014) The formation and evolution of the hierarchical structure of polyethylene pipe during extrusion processing. J Macromol Sci B 53:205–216

    Article  CAS  Google Scholar 

  20. Li Y, Nie M, Wang Q (2017) Facile fabrication of electrically conductive low-density polyethylene/carbon fiber tubes for novel smart materials via multiaxial orientation. ACS Appl Mater Interfaces 10:1005–1016

    Article  CAS  PubMed  Google Scholar 

  21. Nie M, Wang Q, Bai SB (2010) Morphology and property of polyethylene pipe extruded at the low mandrel rotation. Polym Eng Sci 50:1743–1750

    Article  CAS  Google Scholar 

  22. Nie M, Bai SB, Wang Q (2010) High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion. Polym Bull 65:609–621

    Article  CAS  Google Scholar 

  23. Miao W, Wang B, Li Y, Zheng W, Chen H, Zhang L, Wang Z (2017) Epitaxial crystallization of precisely bromine-substituted polyethylene induced by carbon nanotubes and graphene. RSC Adv 7:17640–17649

    Google Scholar 

  24. Pi L, Hu X, Nie M, Wang Q (2014) Role of ultrahigh molecular weight polyethylene during rotation extrusion of polyethylene pipe. Ind Eng Chem Res 53:13828–13832

    Google Scholar 

  25. An M, Xu H, Lv Y, Gu Q, Tian F, Wang Z (2016) An in situ small-angle X-ray scattering study of the structural effects of temperature and draw ratio of the hot-drawing process on ultra-high molecular weight polyethylene fibers. RSC Adv 6:51125–51134

    Google Scholar 

  26. Sun FS, Bai SB, Wang Q (2018) Structures and properties of waste silicone cross-linked polyethylene de-cross-linked selectively by solid-state shear mechanochemical technology. J Vinyl Addit Technol 25:149–158

    Article  CAS  Google Scholar 

  27. Li YJ, Nie M, Wang Q (2016) Synergistic effect of self-assembling nucleating agent and crystallization promoter on polypropylene random copolymer pipes via rotation extrusion. Polym Eng Sci 56:866–873

    Article  CAS  Google Scholar 

  28. Cho S, Jeong S, Kim JM, Baig C (2017) Molecular dynamics for linear polymer melts in bulk and confined systems under shear flow. Sci Rep 7:9004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramos J, Vega JF, Martínez-Salazar J (2018) Predicting experimental results for polyethylene by computer simulation. Eur Polym J 99:298–331

    Article  CAS  Google Scholar 

  30. Bornarel AC, White JR (1998) Birefringence and shrinkage during thermal reversion of oriented polymers. Polym Polym Compos 6:287–294

    CAS  Google Scholar 

  31. Lamberti G (2014) Flow induced crystallisation of polymers. Chem Soc Rev 43:2240–2252

    Article  CAS  PubMed  Google Scholar 

  32. Orton H (2013) History of underground power cables. IEEE Electr Insul Mag 29(4):52–57

    Article  Google Scholar 

  33. Zhu WW, Zhao YF, Han ZZ, Wang XB, Wang YF, Liu G, Xie Y, Zhu NX (2019) Thermal effect of different laying modes on cross-linked polyethylene (XLPE) insulation and a new estimation on cable ampacity. Energies 12(15):2994

    Article  CAS  Google Scholar 

  34. Orton H (2015) Power cable technology review. High Volt Eng 41:1057–1067

    Google Scholar 

  35. Shwehdi MH, Morsy MA, Abugurain A (2003) Thermal aging tests on XLPE and PVC cable insulation materials of Saudi Arabia. In: Proceedings of the IEEE conference on electrical insulation and dielectric phenomena, Albuquerque, NM, USA, 19 November 2003, pp 176–180

    Google Scholar 

  36. Liu X, Yu Q, Liu M, Li Y, Zhong L, Fu M (2017) DC electrical breakdown dependence on the radial position of specimens within HVDC XLPE cable insulation. IEEE Trans Dielectr Electr Insul 24:1476–1486

    Article  CAS  Google Scholar 

  37. Ouyang B, Li H, Li J (2017) The role of micro-structure changes on space charge distribution of XLPE during thermo-oxidative ageing. IEEE Trans Dielectr Electr Insul 24:3849–3859

    Article  CAS  Google Scholar 

  38. Diego JA, Belana J, Orrit J, Cañadas JC, Mudarra M, Frutos F, Acedo M (2011) Annealing effect on the conductivity of xlpe insulation in power cable. IEEE Trans Dielectr Electr Insul 18:1554–1561

    Article  CAS  Google Scholar 

  39. Xie Y, Zhao Y, Liu G, Huang J, Li L (2019) Annealing effects on XLPE insulation of retired high-voltage cable. IEEE Access

    Google Scholar 

  40. Xie Y, Liu G, Zhao Y (2019) Rejuvenation of retired power cables by heat treatment. IEEE Trans Dielectr Electr Insul 26:668–670

    Article  CAS  Google Scholar 

  41. Celina M, Gillen KT, Clough RL (1998) Inverse temperature and annealing phenomena during degradation of crosslinked polyolefins. Polym Degrad Stab 61:231–244

    Article  CAS  Google Scholar 

  42. Kalkar AK, Deshpande AA (2010) Kinetics of isothermal and non-isothermal crystallization of poly (butylene terephthalate) liquid crystalline polymer blends. Polym Eng Sci 41:1597–1615

    Article  Google Scholar 

  43. Wang Y, Shen C, Li H, Qian L, Chen J (2010) Nonisothermal melt crystallization kinetics of poly (ethylene terephthalate)/clay nanocomposites. J Appl Polym Sci 91:308–314

    Article  CAS  Google Scholar 

  44. Xie AS, Zheng XQ, Li ST, Chen G (2010) The conduction characteristics of electrical trees in XLPE cable insulation. J Appl Polym Sci 114:3325–3330

    Article  CAS  Google Scholar 

  45. Xie A, Li S, Zheng X, Chen G (2009) The characteristics of electrical trees in the inner and outer layers of different voltage rating XLPE cable insulation. J Phys D Appl Phys 42:125106–125115

    Article  CAS  Google Scholar 

  46. Insulated Conductors Committee of the IEEE Power Engineering Society (1981) IEEE GUIDE for soil thermal resistivity measurements. IEEE Std 442, Reaffirmed 2003. IEEE, Piscataway, NJ, USA

    Google Scholar 

  47. Malatray M, Roux J-P, Gunst S, Pibarot V, Wegrzyn J (2017) Highly crosslinked polyethylene: a safe alternative to conventional polyethylene for dual mobility cup mobile component. A biomechanical validation. Int Orthop 41(3):507–512

    Article  PubMed  Google Scholar 

  48. Lambert B, Neut D,  van der Veen HC, Bulstra SK (2019) Effects of vitamin E incorporation in polyethylene on oxidative degradation, wear rates, immune response, and infections in total joint arthroplasty: a review of the current literature. Int Orthop 43(7):1549-1557

    Google Scholar 

  49. Massin P, Achour S (2017) Wear products of total hip arthroplasty: the case of polyethylene. Morphologie 101(332):1–8

    Google Scholar 

  50. Leclercq S, Benoit JY, de Rosa JP, Tallier E, Leteurtre C, Girardin P (2013) Evora® chromium-cobalt dual mobility socket: results at a minimum 10 years’ follow up. Orthop Traumatol Surg Res 99:923–928

    Article  CAS  PubMed  Google Scholar 

  51. Paxton EW, Inacio MCS, Namba RS, Love R, Kurtz SM (2015) Metal-on-conventional polyethylene total hip arthroplasty bearing surfaces have a higher risk of revision than metal-on-highly crosslinked polyethylene: results from a US registry. Clin Orthop Relat Res 473:1011–1021

    Article  PubMed  PubMed Central  Google Scholar 

  52. Glyn-Jones S, Thomas GE, Garfjeld-Roberts P, Gundle R, Taylor A, McLardy-Smith P, Murray DW (2015) The John Charnley Award: highly crosslinked polyethylene in total hip arthroplasty decreases long-term wear: a double-blind randomized trial. Clin Orthop Relat Res 473:432–438

    Article  PubMed  Google Scholar 

  53. Sobieraj MC, Rimnac CM (2009) Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater 2:433–443

    Article  CAS  PubMed  Google Scholar 

  54. Gencur SJ, Rimnac CM, Kurtz SM (2006) Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene. Biomaterials 27:1550–1557

    Article  CAS  PubMed  Google Scholar 

  55. Pruitt LA (2005) Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26:905–915

    Article  CAS  PubMed  Google Scholar 

  56. Sirimamilla A, Furmanski J, Rimnac C (2013) Peak stress intensity factor governs crack propagation velocity in crosslinked ultra-high-molecular-weight polyethylene. J Biomed Mater Res B Appl Biomater 101:430–435

    PubMed  Google Scholar 

  57. Baker DA, Bellare A, Pruitt L (2003) The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J Biomed Mater Res A 66:146–154

    Article  CAS  PubMed  Google Scholar 

  58. Medel FJ, Peña P, Cegoñino J, Gómez-Barrena E, Puértolas JA (2007) Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylenes. J Biomed Mater Res B Appl Biomater 83:380–390

    Article  CAS  PubMed  Google Scholar 

  59. Ast MP, John TK, Labbisiere A, Robador N, Valle AG (2014) Fractures of a single design of highly cross-linked polyethylene acetabular liners: an analysis of voluntary reports to the United States food and drug administration. J Arthroplasty 29:1231–1235

    Article  PubMed  Google Scholar 

  60. Furmanski J, Kraay MJ, Rimnac C (2011) Crack initiation in retrieved cross-linked highly cross-linked ultrahigh-molecular-weight polyethylene acetabular liners. an investigation of 9 cases. J Arthroplasty 26:796–801

    Article  PubMed  Google Scholar 

  61. Birman MV, Noble PC, Conditt MA, Li S, Mathis KB (2005) Cracking and impingement in ultra-high-molecular-weight polyethylene acetabular liners. J Arthroplasty 20:87–92

    Article  PubMed  Google Scholar 

  62. Kurtz SM, Austin MS, Azzam K, Sharkey PF, MacDonald DW, Medel FJ, Hozack WJ (2010) Mechanical properties, oxidation, and clinical performance of retrieved highly cross-linked crossfire liners after intermediate-term implantation. J Arthroplasty 25:614–623

    Article  PubMed  Google Scholar 

  63. Kurtz SM, Manley M, Wang A, Taylor S, Dumbleton J (2002–2003) Comparison of the properties of annealed crosslinked (Crossfire) and conventional polyethylene as hip bearing materials. Bull Hosp Jt Dis 61:17–26

    Google Scholar 

  64. MacDonald D, Sakona A, Ianuzzi A, Rimnac CM, Kurtz SM (2011) Do first-generation highly crosslinked polyethylenes oxidize in vivo? Clin Orthop Relat Res 469:2278–2285

    Article  PubMed  Google Scholar 

  65. Muratoglu OK, Oral E (2011) Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop 35:215–223

    Article  PubMed  Google Scholar 

  66. Cornelia V, Seymour RB (1993) Handbook of polyolefin’s. Marcel Dekker, New York

    Google Scholar 

  67. Gowariker VR, Viswanathan NV, Sreedhar J (1993) Polymer science, 7th ed. New Delhi Publisher, Bangalore

    Google Scholar 

  68. Ulrich H (1993) Introduction to industrial polymer, 2nd ed. Hanser, Munich

    Google Scholar 

  69. Brydson J (1999) Plastics material. 7th ed. ButterworthHeinemann, Oxford

    Google Scholar 

  70. Mori T (1998) Process For producing silane crosslinked polyolefin. U.S. Patent 5,756,582

    Google Scholar 

  71. Mori T (2000) Process for producing flame-retardant, silane crosslinked polyolefin. U.S. Patent 6,107,413

    Google Scholar 

  72. Shieh Y-T, Tsai T-H (1998) Silane grafting reactions of low density polyethylene. J Appl Polym Sci 69:255–261

    Google Scholar 

  73. Shieh Y-T, Liu C-M (1999) Silane grafting reactions of LDPE, HDPE and LLDPE. J Appl Polym Sci 4:3404–3411

    Google Scholar 

  74. Shieh Y-T, Hsiao K-I (1998) Thermal properties of silane grafted water-crosslinked polyethylene. J Appl Polym Sci 70:1075–1082

    Google Scholar 

  75. Han SO, Lee DW, Han OH (1999) Thermal degradation of crosslinked high density polyethylene. Polym Degrad Stab 63:237–243

    Google Scholar 

  76. Shieh Y-T, Chuang H-C, Liu C-M (2001) Water crossliking reactions of silane grafted polyolefin blends. J Appl Polym Sci 81:1799–1807

    Google Scholar 

  77. Shieh Y-T, Chuang H-C (2001) DSC and DMA studies on silane grafted and water crosslinked LDPE/LLDPE blends. Journal of Applied Polymer Science 81:1808–1816

    Google Scholar 

  78. Kumar S, Pandya MV (1997) Thermally recoverable crosslinked polyethylene. J Appl Polym Sci 64:823–829

    Google Scholar 

  79. Muńoz PMAP, Vargas MD, Werlang MM (2001) High density polyethylene modified by polydimethylsiloxane. J Appl Polym Sci 82:3460–3467

    Google Scholar 

  80. Kang T-K, Ha C-S (1999) Effect of processing variables on the crosslinking of HDPE by peroxide. Polym Test 19:773–783

    Google Scholar 

  81. McCormick JA, Royer JR, Hwang CR, Khan SA (2000) Tailored rheology of a metallocene polyolefin through silane grafting and subsequent silane crosslinking. J Appl Polym Sci Part B Polym Phys 38:2468–2479

    Google Scholar 

  82. Huang H, Lu H, Liu NC (2000) Influence of grating formulations and extrusion conditions on properties of silane-grafted polypropylenes. J Appl Polym Sci 78:1233–1238

    Google Scholar 

  83. Yamazaki T, Seguchi T (1997) ESR study on chemical crosslinking reaction mechanisms of polyethylene using a chemical agent. J Appl Polym Sci Part Polym Chem 35:279–284

    Google Scholar 

  84. Abraham D, George KE, Francis DJ (1998) Structure-propertyprocessing relationships in chemically modified LDPE and LDPE/LLDPE blend. J Appl Polym Sci 67:789–797

    Google Scholar 

  85. Smedberg A, Hjertberg T, Gustafsson B (1997) Crosslinking reaction in an unsaturated low density polyethylene. Polymer 38(16):127–4138

    Google Scholar 

  86. Miyashita Y, Kato H (1988) CrossLinking reaction of LDPE and the behavior of decomposition products from crosslinking agents. IEEE Trans Dielectr Electr Insul 259–262

    Google Scholar 

  87. Wang Z, Chan CM, Zhu SH, Shen J (1998) Compatibilization of polystyrene and low density polyethylene blends by two-step crosslinking process. 39:6801–6806

    Google Scholar 

  88. Krupa I, Luyt AS (2001) Mechanical properties of uncrosslinked and crosslinked linear low-density polyethylene/wax blends. J Appl Polym Sci 81:973–980

    Google Scholar 

  89. Bremner T, Rudin A (1993) Peroxide modification of linear low density polyethylene: a comparison of dialkyl peroxide. J Appl Polym Sci 49:785–798

    Google Scholar 

  90. Penfold et al (1998) Silane crosslinkable, substantially linear ethylene polymers and their uses. U.S. Patent 5,824,718

    Google Scholar 

  91. Sajkiewicz P, Phillips PJ (1995) Peroxide crosslinking of linear low-density polyethylene’s with homogeneous distribution of short chain branching. J Appl Polym Sci Part A Polym Chem 33:853–862

    Google Scholar 

  92. Sajkiewicz P, Phillips PJ (1995) Changes in sol fraction during peroxide crosslinking of linear low-density polyethylenes with homogeneous distribution of short chain branching. J Appl Polym Sci Part A Polym Chem 33:949–955

    Google Scholar 

  93. Bremner T, Rudin A (1995) Effect of antioxidant on peroxide modification of LLDPE. J Appl Polym Sci 57:271–286

    Google Scholar 

  94. Lachtermacher MG, Rudin A (1998) Reactive processing of LLDPE in co rotating no intermeshing twin-screw extruder. III. Methods of peroxide addition. J Appl Polym Sci 59:1775–1785

    Google Scholar 

  95. Isac SK, George KE (2001) Reactive processing of polyethylene on a single screw extruder. J Appl Polym Sci 81:2545–2549

    Google Scholar 

  96. Yamaguchi M, Suzuki K-I (2001) Rheological properties of linear and crosslinked polymer blends: relation between crosslink density and enhancement of elongational viscosity. J Appl Polym Sci Part B Polym Phys 39:228–235

    Google Scholar 

  97. Nield SA, Tzoganakis C, Budman HM (2000) Chemical modification of low density polyethylene through reactive extrusion: Part I: process development and product characterization. Adv Polym Technol 19:237–248

    Google Scholar 

  98. Jeong H-G, Lee K-J (1999) Effect of discontinuous phase size on physical properties of LLDPE/PP blends obtained in the presence of peroxide. J Adv Polym Technol 18:43–51

    Google Scholar 

  99. Lachtermacher MG, Bremner, Rudin A (1995) Reactive processing of LLDPE in co rotating intermeshing twin-screw extruder. II. Effect of peroxide treatment on processability. J Appl Polym Sci 58:2433–2449

    Google Scholar 

  100. Rosales C, Perera R, Gonzalez J (1999) Grafting of polyethylene by reactive extrusion. II. Influence on rheological and thermal properties. J Appl Polym Sci 73:2549–2567

    Google Scholar 

  101. Narkis M, Raiter I, Shkolnik S, Eyerer P, Siegmann A (1987) Structure and tensile behavior of irradiation-crosslinked and peroxide-crosslinked polyethylene’s. J Macromol Sci 26:37–58

    Google Scholar 

  102. Ribes-Greus A, Diaz-Calleja R Relationship between the mechanical relaxations in the zone and the calorimetric transitions in low density polyethylene. J Appl Polym Sci 34:2819–2828

    Google Scholar 

  103. Liu TM, Baker WE (1992) The effect of the length of the short chain branch on the impact properties of linear low density polyethylene. Polym Eng Sci 32:944–955

    Google Scholar 

  104. Tsui SW, Duckett RA, Ward IM (1992) Structure-property-processing relationships in chemically modified polyethylene. J Mater Sci 27:2799–2806

    Google Scholar 

  105. Krauss S, Metzger TH, Fratzl P, Harrington MJ (2013) Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromol 14:1520–1528

    Article  CAS  Google Scholar 

  106. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702

    Article  CAS  PubMed  Google Scholar 

  107. Liu Y, Hsieh C, Chen Y (2006) Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels-Alder reaction. Polymer 47:2581–2586

    Article  CAS  Google Scholar 

  108. Peterson AM, Jensen RE, Palmese GR (2010) Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction. ACS Appl Mater Interfaces 2:1141–1149

    Article  CAS  PubMed  Google Scholar 

  109. Chen X, Wudl F, Mal AK, Shen H, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36:1802–1807

    Article  CAS  Google Scholar 

  110. Maeno Y, Hirai N, Ohki Y, Tanaka T, Okashita M, Maeno T (2005) Effects of crosslinking byproducts on space charge formation in crosslinked polyethylene. IEEE Trans Dielectr Electr Insul 12(1):90–97

    Article  CAS  Google Scholar 

  111. Lau WS, Chen G (2006) Simultaneous space charge and conduction current measurements in solid dielectrics under high dc electric field. In: Proceeding of 2008 international conference on condition monitoring and diagnosis

    Google Scholar 

  112. Maeno T, Kushibe H, Takada T, Cooke CM (1985) Pulsed electro-acoustic method for the measurement of volume charges in E-beam irradiated PMMA. In: Annual report, conference on electrical insulation and dielectric phenomena

    Google Scholar 

  113. Malec D (2000) Technical problems encountered with the laser induced pressure pulse method in studies of high voltage cable insulators. Meas Sci Technol 11(5):N76–N80

    Article  CAS  Google Scholar 

  114. Lee DC, Lee NH, Mizutani T, Ieda M (1988) Thermally stimulated current due to ionic carriers in polysulfone. In: Proceeding of 2nd international conference on properties and applications of dielectric materials, pp 363–366

    Google Scholar 

  115. Levy RA (1968) Principles of solid state physics, Academic Press. Lewiner J (1986) Evolution of experimental techniques for the study of the electrical properties of insulating materials. IEEE Trans Dielectr Electr Insul EI-21(3):351–360

    Google Scholar 

  116. Lewis TJ (1955) Some factors influencing field emission and fowler-nordheim law. Proc Phys Soc Sect B 68(11):938–943

    Article  Google Scholar 

  117. Lewis TJ (2002) Polyethylene under electrical stress. IEEE Trans Dielectr Electr Insul 9(5):717–729

    Article  CAS  Google Scholar 

  118. Li KC, Tang KC, Lee JS, Chao CL, Chang RK (1997) Thermal stimulated current study of core-shell impact modifier/PVC blends. J Vinyl Add Tech 3(1):17–20

    Article  CAS  Google Scholar 

  119. Li Y, Takada T (1992) Experimental observation of charge transport and injection in XLPE at polarity reversal. J Appl Phys D 25:704–716

    Article  CAS  Google Scholar 

  120. Li Y, Takada T (1994) Progress in space charge measurement of solid insulating materials in Japan. IEEE Electr Insul Mag 10(5):16–28

    Article  Google Scholar 

  121. Li Y, Yasuda M, Takada T (1994) Pulsed electroacoustic method for measurement of charge accumulation in solid dielectrics. IEEE Trans Dielectr Electr Insul 1(2):188–195

    Article  Google Scholar 

  122. Lim FN, Fleming RJ (1999) The temperature dependence of space charge accumulation and DC current in XLPE power cable insulation. In: Proceeding of annual report, conference on electrical insulation and dielectric phenomena, pp 66–69

    Google Scholar 

  123. Lim FN, Fleming RJ, Naybour RD (1999) Space charge accumulation in power cable XLPE insulation. IEEE Trans Dielectr Electr Insul 6(3):273–281

    Article  CAS  Google Scholar 

  124. Molinié P (2005) Measuring and modeling transient insulator response to charging: the contribution of surface potential studies. IEEE Trans Dielectr Electr Insul 12(5):939–950

    Article  Google Scholar 

  125. Montanari GC, Laurent C, Teyssedre G, Campus A, Nilsson UH (2005) From LDPE to XLPE: investigating the change of electrical properties. Part I: space charge, conduction and lifetime. IEEE Trans Dielectr Electr Insul 12(3):438–444

    Article  CAS  Google Scholar 

  126. Long W, Nilsson S (2007) HVDC transmission: yesterday and today. IEEE Power Energ Mag 5(2):22–31

    Article  Google Scholar 

  127. Liu R, Takada T, Takasu N (1993) Pulsed electoacoustic method for measurement of space charge distribution in power cables under both Dc and Ac eletric field. J Phys D Appl Phys 26:986–993

    Article  Google Scholar 

  128. Liu Z, Liu R, Wang H, Liu W (1989) Space charges and initiation of electrical trees. IEEE Trans Dielectr Electr Insul 24(1):83–90

    Article  CAS  Google Scholar 

  129. Maeno T, Futami T, Kushibe H, Takada T, Cooke CM (1988) Measurement of spatial charge distribution in thick dielectrics using the pulsed electroacoustic method. IEEE Trans Dielectr Electr Insul 23(3):433–439

    Article  CAS  Google Scholar 

  130. Many A, Rakavy G (1962) Theory of transient space-charge-limited currents in solids in the presence of trapping. Phys Rev 126(6):1980–1988

    Article  CAS  Google Scholar 

  131. Maruyama S, Ishii N, Shimada M, Kojima S, Tanaka H, Asano M, Yamanaka T, Kawakami S (2004) Development of a 500 kV DC XLPE cable system. Furukawa Rev 25:47–52

    Google Scholar 

  132. Mellinger A, Singh R, Gerhard-Multhaupt R (2005) Fast thermal-pulse measurements of space charge distributions in electret polymers. Rev Sci Instrum 76:013903

    Article  CAS  Google Scholar 

  133. Meunier M, Quirke N, Aslanides A (2001) Molecular modelling of electron traps in polymer insulators: Chemical defects and impurities. J Chem Phys 115(6):2876–2881

    Article  CAS  Google Scholar 

  134. Migliori A, Hofler T (1982) Use of laser-generated acoustic pulses to measure the electric field inside a solid dielectric. Rev Sci Instrum 53(5):662–666

    Article  CAS  Google Scholar 

  135. Mizutani T (1994) Space charge measurement techniques and space charge in polyethylene. IEEE Trans Dielectr Electr Insul 1(5):923–933

    Article  CAS  Google Scholar 

  136. Montanari GC, Mazzanti G, Palmieri F, Motori A, Perego G, Serra S (2001) Space-charge trapping and conduction in LDPE, HDPE and XLPE. J Appl Phys D 34:2902–2911

    Article  CAS  Google Scholar 

  137. Murooka Y, Takada T, Hidaka K (2001) Nanosecond surface discharge and charge density evaluation Part I: review and experiments. IEEE Electr Insul Mag 17(2):6–16

    Article  Google Scholar 

  138. Neagu ER, Dias CJ (2009) Charge injection/extraction at a metal-dielectric interface: experimental validation. IEEE Electr Insul Mag 25(1):15–22

    Article  Google Scholar 

  139. Montanari GC, Mazzanti G, Palmieri F, Perego G, Serra S (2001) Dependence of space-charge trapping threshold on temperature in polymeric DC cables. In: Proceeding of the international conference on solid dielectrics, pp 81–84

    Google Scholar 

  140. Morse PM, Ingrad KU (1968) Theoretical acoustic. McGraw-Hill Book Company, New York. Morshuis PHF, Jeroense M (1997) Space charge measurements on impregnated paper: a review of the PEA method and a discussion of the results. IEEE Electr Insul Mag 13(3):26–35

    Google Scholar 

  141. Muronaka T, Tanaka Y, Takada T, Maruyama S, Mutou H (1996) Measurement of space charge distribution in XLPE using PEA system with flat electrode. In: Proceeding of annual report, conference on electrical insulation and dielectric phenomena, pp 266–269

    Google Scholar 

  142. Notingher Jr P, Agnel S, Toureille A (2001) Thermal step method for space 188 charge measurements under applied dc field. IEEE Trans Dielectr Electr Insul 8(6):985–994

    Google Scholar 

  143. Orton HE, Hartlein R (2006) Long-life XLPE-insulated power cables. Pascoe KJ (1973) Properties of materials for electrical engineers. Wiley. Pollock DD (1993) Physical properties of materials for engineers. CRC Press

    Google Scholar 

  144. Precopio F, Gilbert A (1999) The invention of chemically crosslinked polyethylene. IEEE Electr Insul Mag 15(1):23–25. Roland C (1979) Physics of dielectrics for the engineer. Elsevier Scientific Publishing Company

    Google Scholar 

  145. Serra S, Tosatti E, Iarlori S, Scandolo S, Santoro G, Albertini M (1998) Interchain states and the negative electron affinity of polyethylene. In: Annual report, conference on electrical insulation and dielectric phenomena, pp 19–22

    Google Scholar 

  146. Sessler GM (1982) Nondestructive laser method for measuring charge profiles in irradiated polymer films. IEEE Trans Nucl Sci NS-29:1644–1649

    Google Scholar 

  147. Sessler GM (1997) Charge distribution and transport in polymers. IEEE Trans Dielectr Electr Insul 4(5):614–628

    Article  CAS  Google Scholar 

  148. Roy S Le, Segur P, Teyssedre G, Laurent C (2003) Description of bipolar charge transport in polyethylene using a fluid model with a constant mobility: model prediction. J Appl Phys D 37:298–305

    Article  CAS  Google Scholar 

  149. Rudervall R, Charpentier J, Sharma R (2000) High voltage direct current (HVDC) transmission systems technology review paper. In Energy Week, Washington, D.C., USA

    Google Scholar 

  150. Sanden B, Ildstad E, Hegergerg R (1996) Space charge accumulation and conduction current in XLPE insulation. In: Conference on dielectric materials, measurements and applications, pp 368–373

    Google Scholar 

  151. See A, Dissado LA, Fothergill JC (2001) Electric field criteria for charge packet formation and movement in XLPE. IEEE Trans Dielectr Electr Insul 8(6):859–866

    Article  CAS  Google Scholar 

  152. Carstensen P, Farkas AA, Campus A, Nilsson UH (2005) The effect of the thermal history on the space charge accumulation in HVDC crosslinked polyethylene cables. In: Annual report, conference on electrical insulation and dielectric phenomena, pp 381–388

    Google Scholar 

  153. Sekii Y, Ohbayashi T, Uchimura T, Mochizuki K, Maeno T (2002) The effects of material properties and inclusions on the space charge profiles of LDPE and XLPE. In: Annual report, conference on electrical insulation and dielectric phenomena, pp 635–639

    Google Scholar 

  154. Boggs S, Damon D, Hjerrild J, Holbol J, Henriksen M (2001) Effect of insulation properties on the field grading of solid dielectric DC cable. IEEE Trans Power Deliv 16(4):456–461

    Article  Google Scholar 

  155. Sessler GM, West JE, Gerhard R (1982) High-resolution laser-pulse method for measuring charge distribution in dielectrics. Phys Rev Lett 48:563–566

    Article  CAS  Google Scholar 

  156. Chen G, Chong YL, Fu M (2006) Calibration of the pulsed electroacoustic technique in the presence of trapped charge. Meas Sci Technol 17:1974–1980

    Article  CAS  Google Scholar 

  157. Sessler GM, West JE, Gerhard R (1981) Measurement of charge distribution in polymer electrets by a new pressure-pulse method. Polym Bull 6(1–2):109–111

    CAS  Google Scholar 

  158. Chen G, Fu M, Liu XZ, Zhong LS (2005) AC aging and space-charge characteristics in low-density polyethylene polymeric insulation. J Appl Phys 97:083713

    Article  CAS  Google Scholar 

  159. Solymar L, Walsh D (1999) Electrical properties of materials. Oxford University Press

    Google Scholar 

  160. Suh KS, Hwang SJ, Noh JS, Takada T (1994) Effects of constituents of XLPE on the formation of space charge. IEEE Trans Dielectr Electr Insul 1(6):1077–1083

    Article  CAS  Google Scholar 

  161. Chen G, Tanaka Y, Takada T, Zhong L (2004) Effect of polyethylene interface on space charge formation. IEEE Trans Dielectr Electr Insul 11(1):113–121

    Article  CAS  Google Scholar 

  162. Sze SM (1981) Physics of semiconductor devices. Wiley

    Google Scholar 

  163. Takada T (1999) Acoustic and optical methods for measuring electric charge distributions in dielectrics. IEEE Trans Dielectr Electr Insul 6(5):519–547

    Article  CAS  Google Scholar 

  164. Abou-Dakka M, Bulinski AT, Bamji SS (2006) Space charge evolution in XLPE with long-term aging under DC Voltage—the effect of temperature and polarity reversals. In: Annual report, conference on electrical insulation and dielectric phenomena

    Google Scholar 

  165. Boukezzi L, Boubakeur A, Lallouani M (2007) Effect of artificial thermal aging on the crystallinity of XLPE insulation cables: X-ray study. In: Annual report, conference on electrical insulation and dielectric phenomena

    Google Scholar 

  166. Choo W, Chen G (2008) Electric field determination in DC polymeric power cable in the presence of space charge and temperature gradient under dc conditions. In: Proceeding of 2008 international conference on condition monitoring and diagnosis, pp 321–324

    Google Scholar 

  167. Burns N, Eichhorn R, Reid C (1992) Stress controlling semiconductive shields in medium voltage power distribution cables. IEEE Electr Insul Mag 8(5):8–24

    Article  Google Scholar 

  168. Chong YL, Chen G, Hosier IL, Vaughan AS, Ho YFF (2005) Heat treatment of cross-linked polyethylene and its effect on morphology and space charge evolution. IEEE Trans Dielectr Electr Insul 12(6):1209–1221

    Article  CAS  Google Scholar 

  169. Dissado LA, Fothergill JH (1992) Electrical degradation and breakdown in polymers. Peter Peregrinus Ltd, London, United Kingdom

    Book  Google Scholar 

  170. Christen T (2004) A simple model for DC-conduction and space-charge formation in insulation material. In: Proceeding of the international conference on solid dielectrics, pp 513–516

    Google Scholar 

  171. Delpino S, Fabiani D, Montanari GC, Dissado LA, Laurent C, Teyssedre G (2007) Fast charge packet dynamics in XLPE insulated cable models. In: Annual report, conference on electrical insulation and dielectric phenomena, pp 421–424

    Google Scholar 

  172. Donald B et al (1978) Standard handbook for electrical engineers, 11th ed. McGraw Hill

    Google Scholar 

  173. Fabiani F, Montanari GC, Bodega R, Morshuis PHF, Laurent C, Dissado LA (2006) The effect of temperature gradient on space charge and electric field distribution of HVDC cable models. In: Proceeding of 8th international conference on properties and applications of dielectric materials, pp 65–68

    Google Scholar 

  174. Agnel S, Toureille A (1997) Two complementary techniques: the thermal step technique and the thermally stimulated currents technique. Study of polycrystalline Al2O3. In: Annual report, conference on electrical insulation and dielectric phenomena

    Google Scholar 

  175. Ahmed NH, Srinivas NN (1997) Review of space charge measurements in dielectrics. IEEE Trans Dielectr Electr Insul 4(5):644–656

    Article  CAS  Google Scholar 

  176. Bambery KR, Fleming RJ (1998) Space charge accumulation in two power cable grades of XLPE. IEEE Trans Dielectr Electr Insul 5(1):103–109

    Article  CAS  Google Scholar 

  177. Bambery KR, Fleming RJ, Holböll JT (2001) Space charge profiles in low density polyethylene samples containing permittivity/conductivity gradient. J Appl Phys D 34(20):3071–3077

    Article  CAS  Google Scholar 

  178. Ando N, Numajiri F (1979) Experimental investigation of space charge in XLPE cable using dust figures. IEEE Trans Dielectr Electr Insul 14(1):36–42

    Article  Google Scholar 

  179. Andrews T, Hampton RN, Smedberg A, Wald D, Waschk V, Weissenberg W (2006) The role of degassing in XLPE cable manufacture. IEEE Electr Insul Mag 22(6):5–16

    Article  Google Scholar 

  180. Bahrman MP, Johnson BK (2007) The ABC of HVDC transmission technologies. IEEE Power Energ Mag 5(2):32–44

    Article  Google Scholar 

  181. Bamji SS, Bulinski AT (1995) An optical technique for in situ measurement of the concentration of the crosslinking by products in XLPE cables. JICABLE 95:158–161

    Google Scholar 

  182. Bartnkias R, Eichhorn RM (1983) Engineering dielectrics, volume IIA electrical properties of solid insulating materials: molecular structure and electrical behavior. American Society for Testing and Materials

    Google Scholar 

  183. Beltzer AI (1988) Acoustic of solids. Spriner, Berlin Heidelberg

    Google Scholar 

  184. Blaise G (1995) Space-charge physics and the breakdown process. J Appl Phys 77:2916–2927

    Article  CAS  Google Scholar 

  185. Blythe AR, Bloor D (2005) Electrical properties of polymers, 2nd ed. Cambridge University Press

    Google Scholar 

  186. Fabiani F, Montanari GC, Laurent C, Teyssedre G, Morshuis PHF, Bodega R, Dissado LA, Campus A, Nilsson UH (2007) Polymeric HVDC cable design and space charge accumulation. Part 1: Insulation/semicon interface. IEEE Electr Insul Mag 23(6):11–19

    Google Scholar 

  187. Fleming RJ (2005) Space charge profiles measurement techniques: recent advances and future directions. IEEE Trans Dielectr Electr Insul 12(5):967–978

    Article  Google Scholar 

  188. Fothergill JC, Montanari GC, Stevens GC, Laurent C, Teyssedre G, Dissado LA, Nilsson UH, Platbrood G (2003) Electrical, microstructural, physical and chemical characterization of HV XLPE cable peelings for an electrical aging diagnostic data base. IEEE Trans Dielectr Electr Insul 10(3):514–527

    Article  CAS  Google Scholar 

  189. Frutos F, Acedo M, Mudarra M, Belana J, Òrrit J, Diego JA, Cañadas JC, Sellarès J (2007) Effect of annealing on conductivity in XLPE mid-voltage cable insulation. J Electrostat 65(2):122–131

    Article  CAS  Google Scholar 

  190. Fu M, Chen G, Davies AE, Head JG (2000) Space charge measurements in power cables using a modified PEA system. In: Proceeding of 8th international conference on dielectric materials, measurements and applications, pp 74–79

    Google Scholar 

  191. Fukunaga K, Miyata H, Takahaashi T, Yoshida S, Niwa T (1991) Measurement of space charge distribution in cable insulation using the pulsed electroacoustic method. In: Proceeding of 3rd international conference on polymeric insulated power cables (JICABLE 1991), pp 520–525

    Google Scholar 

  192. Gallot-lavallee O, Teyssedre G (2004) Space charge measurement in solid dielectrics by pulsed electro-acoustic technique. In: Proceeding of 2004 IEEE international conference solid dielectrics, pp 268–271

    Google Scholar 

  193. Hanley TL, Burford RP, Fleming RJ, Barber KW (2003) A general review of polymeric insulation for use in HVDC cables. IEEE Electr Insul Mag 19(1):13–24

    Article  Google Scholar 

  194. Garton A, Groeger JH, Henry JL (1990) Ionic impurities in crosslinked polyethylene cable insulation. IEEE Trans Electr Insul 25(2):427–434

    Article  CAS  Google Scholar 

  195. Goshowaki M, Endoh I, Noguchi K, Kawabe U, Sekii Y (2007) Influence of antioxidants on electrical conduction in LDPE and XLPE. J Electrostat 65(9):551–554

    Article  CAS  Google Scholar 

  196. Kao KC, Hwang W (1981) Electrical transport in solids. Pergamon Press

    Google Scholar 

  197. Hampton N (1995) Insulations for polymeric supertension cables. In: Proceeding of IEE two day colloquium supertension, pp 511–515

    Google Scholar 

  198. Kawasaki K, Arai Y, Takada T (1991) Two-dimensional measurement of electrical surface charge distribution on insulating material by electrooptic pockels effect. Jpn J Appl Phys 30(6):1262–1265

    Article  CAS  Google Scholar 

  199. Kon H, Mizutani T, Suzuoki Y, Shigetsugu H (1994) High-field conduction and space charge in polyethylene. In: Proceeding of annual report, conference on electrical insulation and dielectric phenomena, pp 268–273

    Google Scholar 

  200. Ho YFF, Chen G, Davies AE, Swingler SG, Sutton SJ, Hampton RN (2003) Effect of semiconducting screen on the space charge dynamic in XLPE and Polyolefin Insulation under dc and 50 Hz AC electric stresses conditions. IEEE Trans Dielectr Electr Insul 10(3):393–403

    Article  CAS  Google Scholar 

  201. Salah Khalil M (1997) International research and development trends and problems of HVDC cables with polymeric insulation. IEEE Electr Insul Mag 13(6):35–47

    Article  Google Scholar 

  202. Khalil MS, Jevase JA (2000) Development of polymeric insulating materials for HVDC using additives: evidence from a multitude of experiments using different techniques. In: IEEE international symposium on electrical insulation, pp 485–488

    Google Scholar 

  203. Holbøll JT, Henriksen M, Hjerrild J (2000) Space charge build-up in XLPE cable with temperature gradient. In: Annual report, conference on electrical insulation and dielectric phenomena, pp 157–160

    Google Scholar 

  204. Holé S, Ditchi T, Lewiner J (2003) Non-destructive methods for space charge distribution measurements: what are the differences? IEEE Trans Dielectr Electr Insul 10(4):670–677

    Article  Google Scholar 

  205. Jones JP, Llewellyn JP, Lewis TJ (2005) The contribution of field-induced morphological change to the electrical aging and breakdown of polyethylene. IEEE Trans Dielectr Electr Insul 12(5):951–966

    Article  CAS  Google Scholar 

  206. Khalil MS, Hansen BS (1988) Investigation of space charge in low-density polyethylene using a field probe technique. IEEE Trans Dielectr Electr Insul 23(3):441–445

    Article  CAS  Google Scholar 

  207. Lalam F, Hoang (2000) Pressure effect on the electrical ageing of polyethylene. J Appl Phys D 33:L133–L136

    Google Scholar 

  208. Lang SB, Das-Gupta DK (1981) A technique for determination the 186 polarization distribution in thin polymer electrets using periodic heating. Ferroelectrics 39(1):1249–1252

    Article  CAS  Google Scholar 

  209. Hozumi N, Takeda T, Suzuki H, Okamoto T (1998) Space charge behavior in XLPE under 0.2–1.2 MV/cm DC fields. IEEE Trans Dielectr Electr Insul 5(1):82–90

    Google Scholar 

  210. Takada T, Hozumi N (2000) Space charge measurements as a diagnostic tool 189 for power cables. IEEE Power Eng Soc Winter Meet 3:1609–1614

    Google Scholar 

  211. Hozumi N, Okamoto T, Imajo T (1992) Space charge distribution measurement in a long size XLPE cable using the pulse electroacoustic method. In: IEEE international symposium on electrical insulation, pp 294–297

    Google Scholar 

  212. Ishikawa I, Nakamura S, Utsunomiya S, Yamamoto S, Niwa T (1994) The research of peroxide decomposition in XLPE cables. In: Annual report, conference on electrical insulation and dielectric phenomena

    Google Scholar 

  213. Takada T, Sakai T (1983) Measurement of electric fields at a dielectric/electrode interface using an acoustic transducer technique. IEEE Trans Dielectr Electr Insul EI-18(6):619–628

    Google Scholar 

  214. Takeda T, Hozumi N, Suzuki H, Fujii K, Terashima K, Hara M, Murata Y, Watanabe K, Yoshida M (1998) Space charge behavior in full-size 250 kV DC XLPE cables. IEEE Trans Power Deliv 13(1):28–39

    Article  Google Scholar 

  215. Fu M, Chen G, Dissado LA, Fothergill JC (2007) Influence of thermal treatment and residues on space charge accumulation in XLPE for DC power cable application. IEEE Trans Dielectr Electr Insul 14(1):53–64

    Article  CAS  Google Scholar 

  216. Tanaka T, Greenwood A (1983) Advanced power cable technology, vol I. CRC Press Inc, USA

    Google Scholar 

  217. Fu M, Dissado LA, Chen G, Fothergill JC (2008) Space charge formation and its modified electric field under applied voltage reversal and temperature gradient in XLPE cable. IEEE Trans Dielectr Electr Insul 15(3):851–860

    Article  CAS  Google Scholar 

  218. Wang X, Tu D, Tanaka Y, Muronaka T, Takada T, Shinoda C, Hashizumi T (1995) Space charge in XLPE power cable under dc electrical stress and heat treatment. IEEE Trans Dielectr Electr Insul 2(3):467–474

    Article  CAS  Google Scholar 

  219. Tanaka T, Greenwood A (1983) Advanced power cable technology, vol II. CRC Press Inc, USA

    Google Scholar 

  220. Fukunaga K, Miyata H, Sugimori M, Takada T (1990) Measurement of charge distribution in the insulation of cables using pulsed electroacoustic method. IEE Trans Japan 110-A(9):647–648

    Google Scholar 

  221. Yamanaka T, Maruyama S, Tanaka T (2003) The development of DC ±500 kV XLPE cable in consideration of the space charge accumulation. In: Proceeding of 7th international conference on properties and applications of dielectric materials, pp 689–694

    Google Scholar 

  222. Zhang Y, Lewiner J, Alquie C, Hampton N (1996) Evidence of strong correlation between space-charge buildup and breakdown in cable insulation. IEEE Trans Dielectr Electr Insul 3(6):778–783

    Article  Google Scholar 

  223. Tanaka Y, Chen G, Zhao Y, Davies AE, Vaughan AS, Takada T (2003) Effect of addictives on morphology and space charge accumulation in low density polyethylene. IEEE Trans Dielectr Electr Insul 10(1):148–154

    Article  CAS  Google Scholar 

  224. Fu M, Chen G, Davies AE, Head J (2001) Space charge measurements in cables using the PEA method: signal data processing considerations. In: Proceedings of the international conference on solid dielectrics, pp 219–222

    Google Scholar 

  225. Weedy BM (1980) Underground transmission of electric power. Wiley

    Google Scholar 

  226. Fukuda F, Irie S, Asada Y, Maeda M, Nakagawa H, Yamada N (2002) The effect of morphology on the impulse voltage breakdown in XLPE cable insulation. IEEE Trans Dielectr Electr Insul 17(5):386–391

    Google Scholar 

  227. Weedy BM, Chu D (1984) HVDC extruded cables, parameters for determination of stresses. IEEE Trans Power Apparatus Syst Insul PAS-103(3):662–667

    Google Scholar 

  228. Tanaka Y, Takada T, Shinoda C, Hashizume T (1994) Temperature dependence of space charge distribution in XLPE cable. In: Annual report, conference on electrical insulation and dielectric phenomena

    Google Scholar 

  229. Wu X, Chen G, Davies AE, Hampton RN, Sutton SJ, Swingler SG (2001) Space charge measurements in polymeric HV insulation materials. IEEE Trans Dielectr Electr Insul 8(4):725–730

    Article  CAS  Google Scholar 

  230. Xu Z, Choo W, Chen G (2007) DC electric field distribution in planar dielectric in the presence of space charge. In: Proceedings of the international conference on solid dielectrics, pp 514–517

    Google Scholar 

  231. https://www.forencisresearch.com/pex-xlpe-market/. Accessed on 9th October 2020

  232. https://www.wfmj.com/story/42550981/cross-linked-polyethylene-foam-xlpe-market-size-2020-to-2026-share-emerging-trends-demand-revenue-and-forecasts-research. Accessed on 9th October 2020

  233. https://www.grandviewresearch.com/industry-analysis/cross-linked-polyethylene-pex-market. Accessed on 9th October 2020

  234. https://www.mordorintelligence.com/industry-reports/cross-linked-polyethylene-xlpe-market. Accessed on 9th October 2020

  235. Han J, Garrett R (2008) Overview of polymer nanocomposites as dielectrics and electrical insulation materials for large high voltage rotating machines. NSTI-Nanotech 2:727–732

    CAS  Google Scholar 

  236. Matthews FL, Rawlings RD (1999) Composite materials: engineering and science, 2nd ed. CRC Press, Woodhead Publishing Limited, Cambridge, UK, Overview, pp 1–28

    Google Scholar 

  237. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater Res 12:1–39

    Article  CAS  Google Scholar 

  238. Nelson JK (2007) Overview of nanodielectrics: insulating materials of the future. In: Proceedings of the electrical insulation conference and electrical manufacturing expo, Nashville, TN, USA, 22–24 October 2007, pp 229–235

    Google Scholar 

  239. Sheer ML (1991) Advanced composites: the leading edge in high performance motor and transformer insulation. In: Proceedings of the 20th electrical electronics insulation conference, Boston, MA, USA, 7–10 October 1991, pp 181–185

    Google Scholar 

  240. Stone GC, Boulter EA, Culbert I, Dhirani H (2004) Historical development of insulation materials and systems. In: Kartalopoulos SV (ed) Electrical insulation for rotating machines—design, evaluation, aging, testing, and repair, 1st edn. Wiley-IEEE Press, Piscataway, NJ, USA, pp 73–94

    Google Scholar 

  241. Pyrhönen J, Jokinen T, Hrabovcová V (2014) Design of rotating electrical machines, 2nd ed. Wiley, West Sussex, UK. Insulation of electrical machines, pp 429–455

    Google Scholar 

  242. Park JJ (2012) AC electrical breakdown characteristics of an epoxy/mica composite. Trans Electr Electron Mater 13:200–203

    Article  Google Scholar 

  243. Lenko D, Schlögl S, Bichler S, Lemesch G, Ramsauer F, Ladstätter W, Kern W (2015) Flexible epoxy-silicone rubber laminates for high voltage insulations with enhanced delamination resistance. Polym Compos 36:2238–2247

    Article  CAS  Google Scholar 

  244. Schlögl S, Lenko D (2015) High voltage insulations with enhanced delamination resistance. Rubber Fibres Plast Int 10:260–261

    Google Scholar 

  245. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kagimoto O (1993) One-pot synthesis of nylon 6-clay hybrid. J Polym Sci Pt A 31:1755–1758. https://doi.org/10.1002/pola.1993.080310714

    Article  CAS  Google Scholar 

  246. Lewis TJ (1994) Nanometric dielectrics. IEEE Trans Dielectr Electr Insul 1:812–825. https://doi.org/10.1109/94.326653

    Article  CAS  Google Scholar 

  247. Frechette MF, Trudeau M, Alamdari HD, Boily S (2001) Introductory remarks on nanodielectrics. In: Conference on electrical insulation and dielectric phenomena, 2001 annual report, Kitchener, ON, Canada, 14–17 October 2001, pp 92–99

    Google Scholar 

  248. Cao Y, Irwin PC, Younsi K (2004) The future of nanodielectrics in the electrical power industry. IEEE Trans Dielectr Electr Insul 11:797–807

    Article  Google Scholar 

  249. Johnston DR, Markovitz M (1998) Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors. 4760296 A. US Patent, 26 July 1988

    Google Scholar 

  250. Henk PO, Kortsen TW, Kvarts T (1999) Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica. High Perform Polym 11:281–296. https://doi.org/10.1088/0954-0083/11/3/304

    Article  CAS  Google Scholar 

  251. Fothergill JC, Dissado LA, Nelson JK (2002) Nanocomposite materials for dielectric structures. EPSRC, Swindon, UK, pp 1–6

    Google Scholar 

  252. Nelson JK, Fothergill JC (2004) Internal charge behaviour in nanocomposites. Nanotechnology 15:586–595. https://doi.org/10.1088/0957-4484/15/5/032

    Article  CAS  Google Scholar 

  253. Pallon LKH, Hoang AT, Pourrahimi AM, Hedenqvist MS, Nilsson F, Gubanski S, Gedde UW, Olsson RT (2016) The impact of MgO nanoparticle interface in ultra-insulating polyethylene nanocomposites for high voltage DC cables. J Mater Chem A 4:8590–8601

    Article  CAS  Google Scholar 

  254. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261

    Article  CAS  Google Scholar 

  255. Shokoohi S, Arefazar A, Khosrokhavar R (2008) Silane coupling agents in polymer-based reinforced composites: a review. J Reinf Plast Compos 27:473–485

    Article  CAS  Google Scholar 

  256. Rong MZ, Zhang MQ, Ruan WH (2006) Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater Sci Technol 22:787–796

    Article  CAS  Google Scholar 

  257. Tasdelen MA (2011) Diels-Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2:2133–2145

    Article  CAS  Google Scholar 

  258. Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Chem Monthly 139:183–195

    Article  CAS  Google Scholar 

  259. Roy M, Nelson JK, Schadler LS, Zou C, Fothergill JC (2005) The influence of physical and chemical linkage on the properties of nanocomposites. In: Proceedings of the annual report conference on electrical insulation and dielectric phenomena (CEIDP), Nashville, TN, USA, 16–19 October 2005, pp 183–186

    Google Scholar 

  260. Reed CW (2007) Self-assembly of polymer nanocomposites for dielectrics and HV insulation. In: Proceedings of the IEEE international conference on solid dielectrics (ICSD), Winchester, UK, 8–13 July 2007, pp 397–400

    Google Scholar 

  261. Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater 13:3516–3523. https://doi.org/10.1021/cm0110627

  262. Tronto J, Bordonal AC, Naal Z, Valim JB (2013) Chapter 1—conducting polymers/layered double hydroxides intercalated nanocomposites. In: Mastai Y (ed) Materials science—advanced topics. InTechOpen, London, UK, pp 3–31

    Google Scholar 

  263. Lutz B, Kindersberger J (2010) Influence of absorbed water on volume resistivity of epoxy resin insulators. In: Proceedings of the 10th IEEE international conference on solid dielectrics (ICSD), Potsdam, Germany, 4–9 July 2010, pp 1–4

    Google Scholar 

  264. Smith RC, Liang C, Landry M, Nelson JK, Schadler LS (2007) Studies to unravel some underlying mechanisms in nanodielectrics. In: Proceedings of the annual report conference on electrical insulation and dielectric phenomena (CEIDP), Vancouver, BC, Canada, 14–17 October 2007, pp 286–289

    Google Scholar 

  265. Patel RR, Gupta N (2008) Volume resistivity of epoxy containing nano-sized Al2O3 fillers. In: Proceedings of the fifteenth national power systems conference (NPSC), Bombay, India, 16–18 December 2008, pp 361–365

    Google Scholar 

  266. Mera G, Gallei M, Bernard S, Ionescu E (2015) Ceramic nanocomposites from tailor-made preceramic polymers. Nanomaterials 5:468–540. https://doi.org/10.3390/nano5020468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Orton H (2015) Power cable technology review. High Voltage Eng 41:1057

    Google Scholar 

  268. Tan D, Irwin P (2011) Polymer based nanodielectric composites. In: Advances in ceramics-electric and magnetic ceramics, bioceramics, ceramics and environment. IntechOpen

    Google Scholar 

  269. Verweij J, Klootwijk J (1996) Dielectric breakdown I: a review of oxide breakdown. Microelectron J 27:611

    Article  CAS  Google Scholar 

  270. Li S, Yin G, Chen G, Li J, Bai S, Zhong L, Zhang Y, Lei Q (2010) Short-term breakdown and long-term failure in nanodielectrics: a review. IEEE Trans Dielectr Electr Insul 17:1523

    Article  CAS  Google Scholar 

  271. Roy M, Nelson JK, MacCrone R, Schadler L (2007) Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J Mater Sci 42:3789

    Google Scholar 

  272. Pitsa D, Danikas MG (2011) Interfaces features in polymer nanocomposites: a review of proposed models. NANO 6:497

    Article  CAS  Google Scholar 

  273. Ashish Sharad P, Kumar KS (2017) Application of surface-modified XLPE nanocomposites for electrical insulation-partial discharge and morphological study. Nanocomposites 3:30

    Article  CAS  Google Scholar 

  274. Worzyk T (2009) Submarine power cables: design, installation, repair, environmental aspects. Springer Science & Business Media

    Google Scholar 

  275. Chen G, Hao M, Xu Z, Vaughan A, Cao J, Wang H (2015) Review of high voltage direct current cables. CSEE J Power Energ Syst 1:9

    Article  Google Scholar 

  276. Mazzanti G, Marzinotto M (2013) Extruded cables for high-voltage direct-current transmission: advances in research and development. Wiley

    Google Scholar 

  277. Bahrman MP, Johnson BK The ABCs of HVDC transmission technologies. IEEE

    Google Scholar 

  278. Badr Y, Ali ZI, Zahran AH, Khafagy RM (2000) Characterization of gamma irradiated polyethylene films by DSC and X-ray diffraction techniques. Polym Int 49:1555

    Article  CAS  Google Scholar 

  279. Tanabe Y, Strobl G, Fischer E (1986) Surface melting in melt-crystallized linear polyethylene. Polymer 27:1147

    Article  CAS  Google Scholar 

  280. Yamanouchi S, Inoue Y, Kondo M (1990) Cross-linked polyethylene-insulated cable. U.S. Patent US4894284A

    Google Scholar 

  281. Porto KMB, Napolitano CM, Borrely SI (2018) Gamma radiation effects in packaging for sterilization of health products and their constituents paper and plastic film. Radiat Phys Chem 142:23

    Article  CAS  Google Scholar 

  282. Takahashi Y, Masaoka T, Pezzotti G, Shishido T, Tateiwa T, Kubo K, Yamamoto K (2014) Highly cross-linked polyethylene in total hip and knee replacement: spatial distribution of molecular orientation and shape recovery behavior. BioMed Res Int

    Google Scholar 

  283. Kim B, White JL (1997) Simulation of thermal degradation, peroxide induced degradation, and maleation of polypropylene in a modular co-rotating twin screw extruder. Polym Eng Sci 37:576

    Article  CAS  Google Scholar 

  284. Beltraán M, Mijangos C (2000) Silane grafting and moisture crosslinking of polypropylene. Polym Eng Sci 40:1534

    Article  Google Scholar 

  285. Avila SM, Horvath DA (2000) Microscopic void detection as a prelude to predicting remaining life in electric cable insulation. In: International topical meeting on nuclear plant instrumentation, controls, and human-machine interface technologies, NPIC&HMIT 2000, Washington, DC

    Google Scholar 

  286. Busse G, Eyerer P (1983) Thermal wave remote and nondestructive inspection of polymers. Appl Phys Lett 43:355

    Article  CAS  Google Scholar 

  287. Meola C, Carlomagno GM, Prisco U, Vitiello A (2004) Nondestructive control of polyethylene blanket insulation by means of lock-in thermography. J Nondestruct Eval 15:55

    Article  Google Scholar 

  288. Abbassi Souraki F, Morshedian J (2001) On the improvement of physical and mechanical properties of PE by crosslinking. Polym Sci Technol 14:95

    CAS  Google Scholar 

  289. Morshedian J, Hoseinpour PM (2009) Polyethylene cross-linking by two-step silane method: a review. Iran Polym J 18:103

    CAS  Google Scholar 

  290. Rodríguez-Fernández O, Gilbert M (2011) Aminosilane grafting of plasticized poly (vinyl chloride) I. Extent and rate of crosslinking. J Appl Polym Sci 66:2111

    Google Scholar 

  291. Weedy B, Chu D (1984) HVDC extruded cables-parameters for determination of stress. IEEE Power Eng Rev PER-4:43

    Google Scholar 

  292. Terashima K, Sukuki H, Hara M, Watanabe K (1998) Research and development of/spl plusmn/250 kV DC XLPE cables. IEEE Trans Power Deliv 13:7

    Article  Google Scholar 

  293. Nishikawa S, Sasaki K-I, Akita K, Sakamaki M, Kazama T, Suzuki K (2017) XLPE cable for DC link. SEI Tech Rev 84:59

    Google Scholar 

  294. (2000) Partial discharge measurement. In: International electrotechnical commission (IEC), Geneva, Switzerland

    Google Scholar 

  295. Densley J (2001) Ageing mechanisms and diagnostics for power cables—an overview. IEEE Electr Insul Mag 17:14

    Article  Google Scholar 

  296. Raymond WJK, Illias HA, Bakar AHA, Mokhlis H (2015) Partial discharge classifications: review of recent progress. Measurement 68:164

    Article  Google Scholar 

  297. Conlan S, Courtney J, Looby T (2015) Accelerated aging test on multiple XLPE MV cables simultaneously to induce water trees.In: 50th international universities power engineering conference (UPEC). IEEE, pp 1–4

    Google Scholar 

  298. Srinivas N, Allam S, Doepken H (1976) The effect of cross-linking and cross-linking agent by-products on tree growth in polyethylene. In: Conference on electrical insulation and dielectric phenomena, annual report 1976. IEEE, pp 380–385

    Google Scholar 

  299. Dissado LA, Fothergill JC (1992) Electrical degradation and breakdown in polymers. IET 9. https://doi.org/10.1049/pbed009e

  300. Tanaka T, Fukuda T, Suzuki S, Nitta Y, Goto H, Kubota K (1974) Water trees in cross-linked polyethylene power cables. IEEE Trans Power Appar Syst PAS-93:693

    Google Scholar 

  301. Hui L, Smith R, Nelson J, Schadler L (2009) Electrochemical treeing in XLPE/Silica nanocomposites. In: Electrical Insulation and Dielectric Phenomena, CEIDP’09. IEEE, pp 511–514

    Google Scholar 

  302. Zhang L, Zhou Y, Cui X, Sha Y, Le TH, Ye Q, Tian J (2014) Effect of nanoparticle surface modification on breakdown and space charge behavior of XLPE/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 21:1554. https://doi.org/10.1109/TDEI.2014.004361

    Article  CAS  Google Scholar 

  303. Crine J-P (2005) Influence of electro-mechanical stress on electrical properties of dielectric polymers. IEEE Trans Dielectr Electr Insul 12:791. https://doi.org/10.1109/TDEI.2005.1511104

    Article  CAS  Google Scholar 

  304. Crine J-P (2005) On the interpretation of some electrical aging and relaxation phenomena in solid dielectrics. IEEE Trans Dielectr Electr Insul 12:1089. https://doi.org/10.1109/TDEI.2005.1561789

    Article  CAS  Google Scholar 

  305. Han B, Wang X, Sun Z, Yang J, Lei Q (2013) Space charge suppression induced by deep traps in polyethylene/zeolite nanocomposite. Appl Phys Lett 102:012902. https://doi.org/10.1063/1.4773918

    Article  CAS  Google Scholar 

  306. Tian F, Lei Q, Wang X, Wang Y (2011) Effect of deep trapping states on space charge suppression in polyethylene/ZnO nanocomposite. Appl Phys Lett 99:142903. https://doi.org/10.1063/1.3646909

    Article  CAS  Google Scholar 

  307. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12:669. https://doi.org/10.1109/TDEI.2005.1511092

    Article  CAS  Google Scholar 

  308. Wang Y, Li G, Yin Y (2015) The effect of Nano-MGO addition on grounded DC tree in cross-linked polyethylene. In: IEEE 11th international conference on the properties and applications of dielectric materials (ICPADM). IEEE, pp 285–288

    Google Scholar 

  309. Murata Y, Goshowaki M, Reddy C, Sekiguchi Y, Hishinuma N, Hayase Y, Tanaka Y, Takada T (20008) Investigation of space charge distribution and volume resistivity of XLPE/MgO nanocomposite material under DC voltage application. In: International symposium on electrical insulating materials (ISEIM 2008). IEEE, pp 502–505

    Google Scholar 

  310. Nagao M, Watanabe S, Murakami Y, Murata Y, Sekiguchi Y, Goshowaki M (2008) Water tree retardation of MgO/LDPE and MgO/XLPE nanocomposites. In: 2008 international symposium on electrical insulating materials (ISEIM 2008). IEEE, pp 483–486

    Google Scholar 

  311. Zhao H, Xu M, Yang J, Zhang W, Wang X, Lei Q (2012) Space charge and electric treeing resistance properties of MgO/LDPE nanocomposite. In: Zhongguo Dianji Gongcheng Xuebao, Proceedings of the Chinese society of electrical engineering. Chinese Society for Electrical Engineering, pp 196–202

    Google Scholar 

  312. Jarvid M, Johansson A, Kroon R, Bjuggren JM, Wutzel H, Englund V, Gubanski S, Andersson MR, Müller C (2015) A new application area for fullerenes: voltage stabilizers for power cable insulation. Adv Mater 27:897. https://doi.org/10.1002/adma.201404306

    Article  CAS  PubMed  Google Scholar 

  313. Mazzanti G, Montanari G, Palmieri F, Alison J (2003) Apparent trap-controlled mobility evaluation in insulating polymers through depolarization characteristics derived by space charge measurements. J Appl Phys 94:5997. https://doi.org/10.1063/1.1616641

    Article  CAS  Google Scholar 

  314. Kaneko K, Mizutani T, Suzuoki Y (1999) Computer simulation on formation of space charge packets in XLPE films. IEEE Trans Dielectr Electr Insul 6:152. https://doi.org/10.1109/94.765904

    Article  CAS  Google Scholar 

  315. Kassiba A, Tabellout M, Charpentier S, Herlin N, Emery J (2000) Conduction and dielectric behaviour of SiC nano-sized materials. Solid State Commun 115:389. https://doi.org/10.1016/S0038-1098(00)00195-2

    Article  CAS  Google Scholar 

  316. Wang Y, Wang C, Xiao K (2016) Investigation of the electrical properties of XLPE/SiC nanocomposites. Polym. Test. 50:145. https://doi.org/10.1016/j.polymertesting.2016.01.007

    Article  CAS  Google Scholar 

  317. Takada T, Hayase Y, Tanaka Y, Okamoto T (2008) Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Trans Dielectr Electr Insul 15:152. https://doi.org/10.1109/T-DEI.2008.4446746

    Article  CAS  Google Scholar 

  318. Li X, Xu M, Zhang K, Xie D, Cao X, Liu X (2014) Influence of organic intercalants on the morphology and dielectric properties of XLPE/montmorillonite nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 21:1705. https://doi.org/10.1109/TDEI.2014.004317

    Article  CAS  Google Scholar 

  319. Zhang L, Khani MM, Krentz TM, Huang Y, Zhou Y, Benicewicz BC, Nelson JK, Schadler LS (2017) Suppression of space charge in crosslinked polyethylene filled with poly(stearyl methacrylate)-grafted SiO2 nanoparticles. Appl Phys Lett 110:132903. https://doi.org/10.1063/1.4979107

    Article  CAS  Google Scholar 

  320. Wang W, Takada T, Tanaka Y, Li S (2017) Trap-controlled charge decay and quantum chemical analysis of charge transfer and trapping in XLPE. IEEE Trans Dielectr Electr Insul 24:3144. https://doi.org/10.1109/TDEI.2017.006637

    Article  CAS  Google Scholar 

  321. Blaško M, Mach P, Antušek A, Urban M (2018) Correction to DFT modeling of cross-linked polyethylene: role of gold atoms and dispersion interactions. J Phys Chem A 122:4591. https://doi.org/10.1021/acs.jpca.8b03343

    Article  CAS  PubMed  Google Scholar 

  322. Blaško M, Mach P, Antušek A, Urban M (2018) DFT modeling of cross-linked polyethylene: role of gold atoms and dispersion interactions. J Phys Chem A 122:1496. https://doi.org/10.1021/acs.jpca.7b12232

    Article  CAS  PubMed  Google Scholar 

  323. Zheng X, Liu Y, Wang Y (2018) Electrical tree inhibition by SiO2/XLPE nanocomposites: insights from first-principles calculations. J Mol Model 24:200. https://doi.org/10.1007/s00894-018-3742-4

    Article  CAS  PubMed  Google Scholar 

  324. Song S, Zhao H, Zheng X, Zhang H, Liu Y, Wang Y, Han B (2018) A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation. R Soc Open Sci 5:170772. https://doi.org/10.1098/rsos.170772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Liao R, Zhang F, Yuan Y, Yang L, Liu T, Tang C (2012) Preparation and electrical properties of insulation paper composed of SiO2 hollow spheres. Energies 5:2943. https://doi.org/10.3390/en5082943

    Article  CAS  Google Scholar 

  326. Paramane AS, Kumar KS (2016) A review on nanocomposite based electrical insulations. Trans Electr Electron Mater 17:239. https://doi.org/10.4313/TEEM.2016.17.5.239

    Article  Google Scholar 

  327. Aigbodion V, Achiv F, Agunsoye O, Isah L (2016) Evaluation of the electrical porcelain properties of alumina-silicate nano-clay. J Chin Adv Mater Soc 4:99. https://doi.org/10.1080/22243682.2015.1118356

    Article  CAS  Google Scholar 

  328. Contreras J, Rodriguez E, Taha-Tijerina J (2017) Nanotechnology applications for electrical transformers—a review. Electr Power Syst Res 143:573. https://doi.org/10.1016/j.epsr.2016.10.058

    Article  Google Scholar 

  329. Li W, Yan H-D, Zhou Y, Zhang C, Chen X (2017) Supersmooth semiconductive shielding materials use for XLPE HVDC cables. In: 1st international conference on electrical materials and power equipment (ICEMPE). IEEE, pp 447–451

    Google Scholar 

  330. Hong G, Hong SM, Koo CM, Baek BK, Lee H-S, Lee Y-W (2015) A kinetic study on the De-crosslinking and decomposition of silane-cross-linked polyethylene in supercritical methanol. Ind Eng Chem Res 54:11961. https://doi.org/10.1021/acs.iecr.5b00377

  331. Lee HS, Jeong JH, Hong G, Cho H-K, Baek BK, Koo CM, Hong SM, Kim J, Lee Y-W (2013) Effect of solvents on de-cross-linking of cross-linked polyethylene under subcritical and supercritical conditions. Ind Eng Chem Res 52:6633. https://doi.org/10.1021/ie4006194

    Article  CAS  Google Scholar 

  332. Goto T, Ashihara S, Yamazaki T, Okajima I, Sako T, Iwamoto Y, Ishibashi M, Sugeta T (2011) Continuous process for recycling silane cross-linked polyethylene using supercritical alcohol and extruders. Ind Eng Chem Res 50:5661. https://doi.org/10.1021/ie101772x

    Article  CAS  Google Scholar 

  333. Goto T, Ashihara S, Kato M, Okajima I, Sako T (2012) Use of single-screw extruder for continuous silane cross-linked polyethylene recycling process using supercritical alcohol. Ind Eng Chem Res 51:6967. https://doi.org/10.1021/ie202303y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Mohammed Reduwan Billah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Billah, S.M.R., Ibrahim, W. (2021). Industrial and Commercial Importance of XLPE. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0514-7_13

Download citation

Publish with us

Policies and ethics