Skip to main content

Research Developments in XLPE Nanocomposites and Their Blends: Published Papers, Patents, and Production

  • Chapter
  • First Online:
Crosslinkable Polyethylene Based Blends and Nanocomposites

Abstract

This chapter reviews the latest advances in research and development of cross-linked polyethylene (XLPE) nanocomposites and blends, in terms of published articles, patents, and related products. The first part briefly introduces the development history of XLPE, research background and progress of XLPE nanocomposites and blends. The second part analyzes the research papers on XLPE nanocomposites and blends published by academic journals mainly from 2005 to 2020 in detail. A large number of current research on XLPE nanocomposites and blends aim to improve their properties in relation to the electrical, mechanical, and thermal ones as well as the microstructure, through chemical or physical methods. In the case of comprehensive electrical properties, the studies are distributed on dielectric properties, space charge behavior, and their applications in electrical engineering. The third part outlines the licensed patents about of XLPE nanocomposites and blends. The vast majority of patents related to XLPE nanocomposites and blends focuses on the compounding process and manufacturing technique, among which 35 representative patents are selected for discussion. The final part introduces several typical XLPE products. The potential advantages, product maturity, and market growth of XLPE nanocomposites or blends are analyzed in the application of cables, tubes, and foams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

XLPE:

Cross-linked Polyethylene

PEX:

Cross-linked Polyethylene

CAGR:

Compound Annual Growth Rate

SiO2:

Silicon Dioxide

SiC:

Silicon Carbide

MgO:

Magnesium Oxide

MMT:

Montmorillonite

Al2O3:

Aluminum Oxide

PPy:

Polypyrrole

TiO2:

Titanium Dioxide

GO:

Graphene Oxide

PE:

Polyethylene

SEM:

Scanning Electron Microscope

LDPE:

Low-density Polyethylene

AC:

Alternating Current

DC:

Direct Current

VI or VS:

Vinylsilane

α :

Scale parameter

β :

Shape parameter

PD:

Partial Discharge

PSMA:

Polystearl Methacrylate

DCP:

Dicumyl Peroxide

PEA:

Pulsed Electroacoustic

HVDC:

High-Voltage Direct Current

PHC:

Half Cycle of Voltage

NHC:

Negative Half Cycle of Voltage

OMMT1:

Ommt Octadecyl Quaternary Ammonium Salt

OMMT2:

Double Octadecyl Benzyl Quaternary Ammonium Salt

T m :

Melting Temperature

EVA:

Ethylene Vinyl Acetate

MFI:

Melt Flow Index

MDOS:

Dimethyloctylsilane

DSC:

Differential Scanning Calorimetry

FTIR:

Fourier Transform Infrared Analysis

OIT:

Oxidative Induction Time

fGO:

Functionalized Graphene Oxide

PAC:

Polycyclic Aromatic Compounds

QWs:

Quantum Wells

DBD:

Dielectric Barrier Discharge

CF4:

Carbon Tetrafluoride

BRNN:

Bidirectional Recurrent Neural Networks

2-D:

Two-Dimensional

MMC:

Maximum Margin Criterion

DIV:

Discharge Inception Voltage

TGA:

Thermogravimetric Analysis

wXLPE:

Waste Cross-linked Polyethylene

MWCNTs:

Multiwalled Carbon Nanotubes

PIF:

Pressure-Induced Flow

CCD:

Charge-Coupled Device

UHF:

Ultra-High Frequency

LV:

Low Voltage

MV:

Medium Voltage

FEM:

Finite Element Method

EPDM:

Ethylene Propylene Diene Monomer

SEBS:

Styrene-b-(ethylene-co-butylene)-b-styrene

TAIC:

Triallyl Isocyanate

TAC:

Triallyl Isocyanurate

DLTP:

Dilauryl Thiodipropionate

PVC:

Polyvinyl Chloride

ASTM:

American Society for Testing Material

EEA:

Eval Ethylenevinyl Alcohol

SCLC:

Space Charge Limiting Current

EPR:

Ethylene Propylene Rubber

VOCs:

Volatile Organic Chemicals

References

  1. Chang Y, Jiang J, Bing S (2010) The microstructure of cross-linked polyethylene observed by scanning electron microscopy. China Rubber/Plastics Technol Equip 36:33–36

    CAS  Google Scholar 

  2. Wang J, Zhang L, Li K (2018) Structures and properties of crosslinked polyethylene composite materials. Petrochem Technol Appl 36:22–24

    Google Scholar 

  3. Sharad PA, Kumar KS (2017) Application of surface-modified XLPE nanocomposites for electrical insulation—partial discharge and morphological study. Nanocomposites 3:30–41

    Article  CAS  Google Scholar 

  4. Nilsson S, Hjertberg T, Smedberg A, Sonerud B (2011) Influence of morphology effects on electrical properties in XLPE. J Appl Polym Sci 121:3483–3494

    Article  CAS  Google Scholar 

  5. Zheng X, Liu Y, Wang Y (2018) Electrical tree inhibition by SiO2/XLPE nanocomposites: insights from first-principles calculations. J Mol Model 24:200

    Article  CAS  Google Scholar 

  6. Sharad PA, Kumar KS (2017) Application of surface modified XLPE nanocomposites for electrical insulation of high voltage cables-partial discharge study. Energy Procedia 117:260–267

    Article  CAS  Google Scholar 

  7. Boggs S, Xu J (2001) Water treeing- filled versus unfilled cable insulation. IEEE Electr Insul Mag 17(1):23–29

    Article  Google Scholar 

  8. Hui L, Smith R, Nelson JK, Schadler LS (2009) Electrochemical treeing in XLPE/silica nanocomposites. In: 2009 IEEE conference on electrical insulation and dielectric phenomena, CEIDP’09, Virginia Beach, VA, pp 511–514

    Google Scholar 

  9. Roy M, Nelson JK, MacCrone RK, Schadler LS (2007) Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J Mater Sci 42:3789–3799

    Article  CAS  Google Scholar 

  10. Jevtic M, Andreev AM (1996) The method of testing of XLPE cable insulation resistance to partial discharges and electrical treeing. Bull Mater Sci 19(5):823–829

    Article  CAS  Google Scholar 

  11. Thomas J, Joseph B, Jose JP, Maria HJ, Main P, Rahman AA, Francis B, Ahmad Z, Thomas S (2019) Recent advances in cross-linked polyethylene-based nanocomposites for high voltage engineering applications: a critical review. Ind Eng Chem Res 58:20863–20879

    Article  CAS  Google Scholar 

  12. Zhang L, Zhou Y, Cui X, Sha Y, Le T, Ye Q, Tian J (2014) Effect of nanoparticle surface modification on breakdown and space charge behavior of XLPE/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 21(4):1554–1564

    Article  CAS  Google Scholar 

  13. Crine JP (2005) Influence of electro-mechanical strees on electrical properties of dielectric polymers. IEEE Trans Dielectr Electr Insul 12(4):791–800

    Article  CAS  Google Scholar 

  14. Crine JP (2005) On the interpretation of some electrical aging and relaxation phenomena in solid dielectrics. IEEE Trans Dielectr Electr Insul 12:1089–1107

    Article  CAS  Google Scholar 

  15. Zhang L, Khani MM, Krentz TM, Huang Y, Zhou Y, Benicewicz BC, Nelson JK, Schadler L (2017) Suppression of space charge in crosslinked polyethylene filled with poly(stearylmethacrylate)-grafted SiO2 nanoparticles. Appl Phys Lett 110:132903

    Article  CAS  Google Scholar 

  16. Zhang H, Liu Y, Du X, Wang X, Zheng X, Li Z (2019) Effect of SiC nano-size fillers on the aging resistance of XLPE insulation: a first-principles study. J Mol Graph Model 93:107438

    Article  CAS  Google Scholar 

  17. Wang Y, Wang C, Xiao K (2016) Investigation of the electrical properties of XLPE/SiC nanocomposites. Polym Test 50:145–151

    Article  CAS  Google Scholar 

  18. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 4:669–681

    Article  Google Scholar 

  19. Nagao M, Watanabe S, Murakami Y, Murata Y, Sekiguchi Y, Goshowaki M (2008) Water tree retardation of MgO/LDPE and MgO/XLPE nanocomposites. In: Proceeding of 2008 international symposium on electrical insulating materials, ISEIM 2008, September 7–11, Yokkaichi, Mie, Japan, pp 483–486

    Google Scholar 

  20. Kim DS, Lee DH, Kim YJ, Nam JH, Ha ST, Lee SH (2013) Investigation of space charge distribution of MgO/XLPE composites depending on particle size of MgO as inorganic filler. Appl Mech Mater 481:108–116

    Article  CAS  Google Scholar 

  21. Zhu X, Wu J, Yang Y, Yin Y (2020) Characteristic of partial discharge and AC electrical tree in XLPE and MgO/XLPE nanocomposites. IEEE Trans Dielectr Electr Insul 27(2):450–458

    Article  CAS  Google Scholar 

  22. Li X, Xu M, Zhang K, Xie D, Cao X (2014) Influence of organic intercalants on the morphology and dielectric properties of XLPE/montmorillonite nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 21(4):1705–1717

    Article  CAS  Google Scholar 

  23. Park Y, Kwon J, Sim J, Hwang J, Seo C, Kim J (2014) DC conduction and breakdown characteristics of Al2O3/cross-linked polyethylene nanocomposites for high voltage direct current transmission cable insulation. Jpn J Appl Phys 53:08NL05

    Google Scholar 

  24. Guo X, Xing Z, Zhao S, Cui Y, Li G, Wei Y (2020) Investigation of the space charge and dc breakdown behavior of XLPE/α-Al2O3 nanocomposites. Materials (Basel) 13:1–14

    Google Scholar 

  25. Hamzah MS, Mariatti M, Ismail H (2019) Melt flow index and flammability of alumina, zinc oxide and organoclay nanoparticles filled cross-linked polyethyelene nanocomposites. Materials Today: Proceeding 17:798–802

    CAS  Google Scholar 

  26. Jose JP, Thomas S (2014) Alumina-clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties. Phys Chem Chem Phys 16:14730

    Article  CAS  Google Scholar 

  27. Zhang C, Zhang H, Li C, Duan S, Jiang Y, Yang J (2018) Crosslinked polyethylene/polypyrrole nanocomposites with improved direct current electrical characteristics. Polym Test 71:223–230

    Article  CAS  Google Scholar 

  28. Jose JP, Mhetar V, Culligan S, Thomas S (2013) Cross linked polyethylene/TiO2 nanocomposites: morphology, polymer/filler interaction, mechanics and thermal properties. Sci Adv Mater 5(4):385–397

    Article  CAS  Google Scholar 

  29. Wang Y, Xiao K, Wang C, Yang L, Wang F (2016) Effect of nanoparticle surface modification and filling concentration on space charge characteristics in TiO2/XLPE nanocomposites. J Nanomater 2840410

    Google Scholar 

  30. Wang Y, Xiao K, Wang C, Yang L, Wang (2016) Study on dielectric properties of TiO2/XLPE nanocomposites. In: 2016 IEEE international conference on high voltage engineering and application (ICHVE), Sept 19–22, Chengdu, China

    Google Scholar 

  31. Toselli M, Saccani A, Pilati F (2014) Thermo-oxidative resistance of crosslinked polyethylene (XLPE) coated by hybrid coatings containing graphene oxide. Surf Coat Technol 258:503–508

    Article  CAS  Google Scholar 

  32. Han C, Du B, Li J, Li Z, Tanaka T (2020) Investigation of charge transport and breakdown properties in XLPE/GO nanocomposites part 1: the role of functionalized GO quantum wells. IEEE Trans Dielectr Electr Insul 27(4):1204–1212

    Article  CAS  Google Scholar 

  33. Zhao A, Chen X, Chen S, Yao C, Zhao X, Deng J (2019) Surface modification of XLPE films by CF4 DBD for dielectric properties. AIP Adv 9:15102

    Article  CAS  Google Scholar 

  34. Balachandran M (2019) XLPE—layered silicate nanocomposites for high voltage insulation applications: dielectric characteristics, treeing behaviour and mechanical properties. IET Sci Meas Technol 13(6):1019–1025

    Google Scholar 

  35. Zhan Y, Chen G, Hao M, Pu L, Zhao X, Wang S (2020) Space charge measurement and modelling in cross-linked polyethylene. Energies 13. https://doi.org/10.3390/en13081906

  36. Rogti F (2013) Space charge behavior and its modified electric field in the cross-linked polyethylene under applied voltage DC and different temperatures. J Electrostat 71:1046–1054

    Article  CAS  Google Scholar 

  37. Kato T, Onozawa R, Miyake H, Tanaka Y, Takada T (2017) Properties of space charge distributions and conduction current in XLPE and LDPE under DC high electric field. Electr Eng Japan 198:19–26

    Article  Google Scholar 

  38. Wang S, Zhou Q, Liao R, Xing L (2019) The impact of cross-linking effect on the space charge characteristics of cross-Linked polyethylene with different degrees of cross-linking under strong direct current electric field. Polymers 11(7):1149

    Article  CAS  Google Scholar 

  39. Arai Y, Kanegae E, Tanaka T, Ohki Y, Sutton (2011) Space charge behavior of XLPE/Silica nanocomposites under high electric field. In: Proceeding of 2011 international conference on electrical insulating materials, ISEIM 2011, Sep 6–11, Kyoto, Japan, pp 362–365

    Google Scholar 

  40. Piah M (2018) Space charge and conductivity measurement of XLPE nanocomposites for HVDC insulation-permittivity as a nanofiller selection parameter. IET Sci Meas Technol 12(7):1058–1065

    Google Scholar 

  41. Du B, Han C, Li Z, Li J (2019) Improved DC conductivity and space charge characteristic of XLPE for HVDC cable application: effect of voltage stabilizers. IEEE Access 7:66576–66583

    Article  Google Scholar 

  42. Lv Z, Wang X, Wu K, Chen X, Cheng Y (2013) Dependence of charge accumulation on sample thickness in nano-SiO2 doped LDPE. IEEE Trans Dielectr Electr Insul 20(1):337–345

    Article  CAS  Google Scholar 

  43. Morsalin S, Phung T (2020) Electrical field distribution on the cross-linked polyethylene insulation surface under partial discharge testing. Poly Test 82:106311

    Article  CAS  Google Scholar 

  44. Hao Z, Yubing D, Bin W, Hui L, Ying L, Xiaoli H (2017) Case analysis on partial discharge signal of XLPE cable T-joint by using high-frequency pulse current method. Energy Procedia 141:545–550

    Article  CAS  Google Scholar 

  45. Song W, Tang J, Pan C, Meng G, Zhang M (2020) Improvement of insulation defect identification for DC XLPE cable by considering PD aging. Int J Electr Power Energy Syst 114:105409

    Article  Google Scholar 

  46. Wei G, Tang J, Zhang X, Lin J (2014) Gray intensity image feature extraction of partial discharge in high-voltage cross-linked polyethylene power cable joint. Int Trans Electr Energy Syst 24:215–226

    Article  Google Scholar 

  47. Roumeli E, Markoulis A, Kyratsi T, Bikiaris D, Chrissafis K (2014) Carbon nanotube-reinforced crosslinked polyethylene pipes for geothermal applications: from synthesis to decomposition using analytical pyrolysis-GC/MS and thermogravimetric analysis. Polym Degrad Stab 100:42–53

    Article  CAS  Google Scholar 

  48. Formela K, Wołosiak M, Klein M, Wang S (2016) Characterization of volatile compounds, structural, thermal and physico-mechanical properties of cross-linked polyethylene foams degraded thermo-mechanically at variable times. Poly Degrad Stab 134:383–393

    Article  CAS  Google Scholar 

  49. Roumeli E, Pavlidou E, Bikiaris D, Chrissafis K (2014) Microscopic observation and micromechanical modeling to predict the enhanced mechanical properties of multi-walled carbon nanotubes reinforced crosslinked high density polyethylene. Carbon 67:475–487

    Article  CAS  Google Scholar 

  50. Kuang T, Chen F, Fu D, Chang L, Peng X, Lee L (2016) Enhanced strength and foamability of high-density polyethylene prepared by pressure-induced flow and low-temperature crosslinking. RSC Adv 6:34422–34427

    Article  CAS  Google Scholar 

  51. Freitas R, Bonse B (2019) Cross-linked polyethylene (XLPE) as filler in high-density polyethylene: effect of content and particle size. AIP Conf Proc 2055:20009

    Article  CAS  Google Scholar 

  52. Bao M, Yin X, He J (2011) Analysis of electrical tree propagation in XLPE power cable insulation. Phys B Condens Matter 406:1556–1560

    Article  CAS  Google Scholar 

  53. Sarathi R, Raju PG (2005) Study of electrical treeing phenomena in XLPE cable samples using acoustic techniques. Electr Power Syst Res 73:159–168

    Article  Google Scholar 

  54. Bao M, Yin X, He J (2011) Structure characteristics of electrical treeing in XLPE insulation under high frequencies. Phys B Condens Matter 406:2885–2890

    Article  CAS  Google Scholar 

  55. Mittal L, Sarathi R, Sethupathi K (2015) Electrical treeing in XLPE cable insulation at cryogenic temperature under harmonic AC voltages. Cryogenics (Guildf) 71:62–67

    Article  CAS  Google Scholar 

  56. Zhu L, Du B, Li H, Hou K (2019) Effect of polycyclic compounds fillers on electrical treeing characteristics in XLPE with DC-impulse voltage. Energies 12:1–15

    Google Scholar 

  57. Qureshi M, Ahaideb A, Arainy A, Malik N (2005) Role of semiconducting screens on water treeing in medium voltage XLPE cables. J King Saud Univ Eng Sci 17:227–242

    Google Scholar 

  58. Kim C, Jang J, Huang X, Jiang P, Kim H (2007) Finite element analysis of electric field distribution in water treed XLPE cable insulation (1): the influence of geometrical configuration of water electrode for accelerated water treeing test. Polym Test 26:482–488

    Article  CAS  Google Scholar 

  59. Kim C, Jin Z, Huang X, Jiang P, Ke Q (2007) Investigation on water treeing behaviors of thermally aged XLPE cable insulation. Polym Degrad Stab 92:537–544

    Article  CAS  Google Scholar 

  60. Ma Z, Huang X, Jiang P (2010) A comparative study of effects of SEBS and EPDM on the water tree resistance of cross-linked polyethylene. Polym Degrad Stab 95:1943–1949

    Article  CAS  Google Scholar 

  61. Qureshi M, Malik N, Arainy A (2011) Impact of cations toward the water tree propensity in crosslinked polyethylene insulation. J King Saud Univ Eng Sci 23:43–48

    Google Scholar 

  62. Chen J, Zhao H, Xu Z, Zhang C, Yang J, Zheng C (2016) Accelerated water tree aging of crosslinked polyethylene with different degrees of crosslinking. Polym Test 56:83–90

    Article  CAS  Google Scholar 

  63. Chen Z, Fang R (2020) An additive feeding device for producing irradiation crosslinked polyethylene foam. China Patent CN210025961U, Feb 2020

    Google Scholar 

  64. Ren D, Chen X, Liang B (2018) A preparation method of crosslinked polyethylene film. China Patent CN108264646A, Jul 2018

    Google Scholar 

  65. Lyu M, Zhang S, Zhang W (2011) A chemical crosslinked polyethylene composition and its preparation method. China Patent CN102140193A, Aug 2011

    Google Scholar 

  66. Denis L (2019) Installation and method for manufacturing cross-linkable polyethylene compounds. US Patent 20190070752A1, Mar 2019

    Google Scholar 

  67. Chen X, Liang W, Niu Y (2013) Crosslinked polyethylene composition. PCT (World) Patent WO2013185302A1, Dec 2013

    Google Scholar 

  68. Stephen Cree H (2013) Process for reducing peroxide migration in crosslinkable ethylene-based polymer compositions. US Patent 9758638B2, Sep 2017

    Google Scholar 

  69. Chen X, Liang W, Lai S (2018) A crosslinkable polyethylene blending composition. China Patent CN103865142A, Dec 2018

    Google Scholar 

  70. Chen X, Liang W, Lai S (2017) Crosslinkable polyethylene composition, crosslinkable polyethylene, preparation method, product and application. China Patent CN106366430A, Feb 2017

    Google Scholar 

  71. Duan J, Wang X, Li J (2006) Silane crosslinked HDPE composition and its preparation method. China Patent CN1511873A, Aug 2006

    Google Scholar 

  72. Wang Y, Wang C, Chen W (2017) Crosslinked polyethylene composite with internal space charge suppression and its preparation and application. China Patent CN104927175A, Apr 2017

    Google Scholar 

  73. Zhen G (2013) Silane crosslinked polyethylene special material. China Patent CN103289167A, Sep 2013

    Google Scholar 

  74. Zhao Y, Li S, Yu L (2016) Silane crosslinked polyethylene insulation material for wire and cable and its preparation method. China Patent CN106117738A, Sep 2016

    Google Scholar 

  75. Xia J, Wu W (2018) Natural-crosslinked aerial insulating material of polyethylene of one-step method silanes and preparation method thereof. China Patent CN107556600A, Jan 2018

    Google Scholar 

  76. Patricia F, Miguel A, Molano N (2017) Partially-crosslinked polyethylene formulations and methods of making same. PCT (World) Patent WO2017112642A1, Jun 2017

    Google Scholar 

  77. Zhu X, Meng Z, Zhou F (2014) Multifunctional cross-linked polyethylene insulation tester. China Patent CN102495341B, Feb 2014

    Google Scholar 

  78. Zheng M, Chen L, Lu Y (2015) The decision method of XLPE material heat ageing sample time. China Patent CN103487331B, Nov 2015

    Google Scholar 

  79. Liu G, Jin S (2017) A judgment method of XLPE cable insulation aging. China Patent CN104749503A, Aug 2017

    Google Scholar 

  80. Li H, Rao J, Lin F (2016) Leakage-proof ring and method of XLPE (crosslinked Polyethylene) cable polarization current measurement. China Patent CN105353280A, Feb 2016

    Google Scholar 

  81. Xu Y, Kang Q, Chen H (2017) A device and method for detecting and evaluating partial discharge of XLPE cable. China Patent CN104714155B, Dec 2017

    Google Scholar 

  82. Wang X, Wang G, Wang R (2020) A kind of coaxial bi-directional reactive extruder for the preparation of cross-linked polyethylene. China Patent CN210233955U, Apr 2020

    Google Scholar 

  83. Sun L, Wang J (2019) A radiation crosslinking polyethylene forming device. China Patent CN209552434U, Oct 2019

    Google Scholar 

  84. Zhao J, He C (2012) Electron irradiation crosslinked polyethylene foaming equipment. China Patent CN202607928U, Dec 2012

    Google Scholar 

  85. Zhang L, Zhao J, He C (2015) A chemical crosslinked polyethylene foaming equipment. China Patent CN103223704A, Oct 2015

    Google Scholar 

  86. Zhang L, Pan F, Jiang C (2011) A kind of soft crosslinked polyethylene insulating material. China Patent CN101602870A, Oct 2011

    Google Scholar 

  87. Jin H, Xiao Y, Deng X (2013) A water resistant crosslinkable polyethylene cable compound and its preparation method. China Patent CN102911417A, Feb 2013

    Google Scholar 

  88. Sohn S, Yang H, Jeong S (2014) Fire resistant cable for medium or high voltage. PCT (World) Patent WO2014081096A1, May 2014

    Google Scholar 

  89. Gu M, Zhang S (2014) Novel composite structured aluminium alloy cable. China Patent CN203746440U, Jul 2014

    Google Scholar 

  90. He M, Liu Y, Luo Z (2015) One step silane natural crosslinked polyethylene cable material and its preparation method. China Patent CN104497409A, Apr 2015

    Google Scholar 

  91. Zhou X, Yin G (2015) New flame retardant XLPE insulated wire and cable and its preparation method. China Patent CN105017661A, Nov 2015

    Google Scholar 

  92. Jia Z, Zhang W, Song W (2019) XLPE (cross-linked polyethylene) cable insulating material. China Patent CN106366419A, Feb 2019

    Google Scholar 

  93. Wang S, Chen Z, Chen P (2019) Nanocomposite crosslinked polyethylene insulation material with high DC breakdown field strength and its preparation method. China Patent CN106633303A, Oct 2019

    Google Scholar 

  94. Xia J (2018) A crosslinked polyethylene insulating material for track cable and its preparation method. China Patent CN108794851A, Nov 2018

    Google Scholar 

  95. Xu J, Wei (2019) A preparation method of vehicle tank lined with XLPE. China Patent CN110404748A, Nov 2019

    Google Scholar 

  96. Jiang J, Wei W, Liu S (2019) Preparation and application of large diameter high density cross linked polyethylene hot wound structure wall pipe. China Patent CN110239123A, Sep 2019

    Google Scholar 

  97. Plea I, Notingher PV, Stancu C, Wiesbrock F, Schlogl S (2019) Polyethylene nanocomposites for power cable insulations. Polymers 11(24):11010024

    Google Scholar 

Download references

Acknowledgements

This work was supported by Hebei Key Laboratory of Distributed Energy Storage and Micro-Grid and the foundation of the National Key R&D Plan (No. 2017YFC0210202-1). The authors thank the editorial team, especially Dr. Jince Thomas and Mr. Vishnu Muthuswamy, for their professionalism, carefulness and patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghui Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, Y. et al. (2021). Research Developments in XLPE Nanocomposites and Their Blends: Published Papers, Patents, and Production. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene Based Blends and Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0486-7_13

Download citation

Publish with us

Policies and ethics