Skip to main content

Biomass-Based CO2 Adsorbents for Biogas Upgradation with Pressure Swing Adsorption

  • Chapter
  • First Online:
Climate Change and Green Chemistry of CO2 Sequestration

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Numerous types of adsorbents have been studied and used in industrial scale during upgradation of biogas by employing pressure swing adsorption. This chapter provides an insight into the working principle, efficiency, and energy consumption of this method in comparison with other processes. The most recent advancement includes the addition of subsequent units, omissions of additional stages, and the use of novel adsorbents in the process that determine the productivity, separation efficiency, and cost of the technology. Based on the literature review, research gaps were identified concerning the biogas upgradation to deliver renewable natural gas to the combined heat and power industries or to the natural gas pipelines as a vehicular fuel. The main setbacks for this sustainable sector are initially due to the digester conditions that lower the biomass conversion to methane, inadequate pre-treatment of biogas for removal of other contaminants, followed by production and selection of appropriate low-cost adsorbent in the final upgradation stage to maximize carbon dioxide elimination. In recent years, biowastes have been found to have the potential of transforming into mesoporous and nanoporous adsorbents upon carbonization and activation techniques which would enhance the adsorption activity. Also, reformation of the simple biochemical and thermochemical methods has intensified the methane yield at digester and reactor levels, respectively. Nonetheless, analyzing the effects of the process parameters for upgradation of biogas and production of adsorbents will lead to further investigation and innovative outcomes. Conclusions are drawn to augment the recent developments and sustainable technologies for broader adoption of renewable natural gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Activated carbon

AD:

Anaerobic digesters

AF:

Anaerobic fermentation

CCS:

Carbon capture and storage

CHP:

Combined heat and power

EDS:

Energy-dispersive spectrometer

ESA:

Electric swing adsorption

FTIR:

Fourier transform infrared spectroscopy

GHG:

Greenhouse gas

HHV:

Higher heating value

HPWS:

High-pressure water scrubbing

HTC:

Hydrothermal carbonization

LNG:

Liquified natural gas

MOFs:

Metal organic frameworks

PSA:

Pressure swing adsorption

RNG:

Renewable natural gas

SRT:

Solid retention time

SSA:

Specific surface area

TSA:

Temperature swing adsorption

VOCs:

Volatile organic compounds

WWTP:

Wastewater treatment plant

References

  1. Abatzoglou N, Steve B (2009) A review of biogas purification. Biofuels Bioprod Biorefining 3:42–71. https://doi.org/10.1002/bbb.117

    Article  Google Scholar 

  2. Abdeen FRH, Mel M, Jami MS, Ihsan SI, Ismail AF (2016) A review of chemical absorption of carbon dioxide for biogas upgrading. Chinese J Chem Eng 24:693–702. https://doi.org/10.1016/j.cjche.2016.05.006

    Article  Google Scholar 

  3. Adib F, Bagreev A, Bandosz T (1999) Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide. J Colloid Interface Sci 214:407–415. https://doi.org/10.1006/jcis.1999.6200

    Article  Google Scholar 

  4. Agarwal A (2010) Advanced strategies for optimal design and operation of pressure swing adsorption processes (Doctoral dissertation). Retrieved from https://dynopt.cheme.cmu.edu/content/thesis/anshul_thesis.pdf

  5. Ahmed MJ (2016) Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments: Review. Process Saf Environ Prot 102:168–182. https://doi.org/10.1016/j.psep.2016.03.010

    Article  Google Scholar 

  6. Alizadeh-Khiavi S, Alvaji JR, McLean C (2013) Low Energy, high recovery, rapid cycle kinetic PSA for biogas. US20130247762A1

    Google Scholar 

  7. Alonso-Vicario A, Ochoa-Gómez JR, Gil-Río S, Gómez-Jiménez-Aberasturi O, Ramírez-López CA, Torrecilla-Soria J, Domínguez A (2010) Microporous and Mesoporous Materials Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous Mesoporous Mater 134:100–107. https://doi.org/10.1016/j.micromeso.2010.05.014

    Article  Google Scholar 

  8. Álvarez-Gutiérrez N, García S, Gil MV, Rubiera F, Pevida C (2014) Towards bio-upgrading of biogas: biomass waste-based adsorbents. Energy Proc 63:6527–6533. https://doi.org/10.1016/j.egypro.2014.11.688

    Article  Google Scholar 

  9. Álvarez-Gutiérrez N, Gil MV, Rubiera F, Pevida C (2016) Adsorption performance indicators for the CO2/CH4 separation: application to biomass-based activated carbons. Fuel Process Technol 142:361–369. https://doi.org/10.1016/j.fuproc.2015.10.038

    Article  Google Scholar 

  10. Askari MB, Fatemeh G, Saman M, Mirhosseiny LM (2015) Advantages and Disadvantages of Biogas Energy. Bull Adv Sci Res 1:132–135

    Google Scholar 

  11. Attia AA, Girgis BS, Khedr SA (2003) Capacity of activated carbon derived from pistachio shells by H3PO4 in the removal of dyes and phenolics. J Chem Technol Biotechnol 78:611–619. https://doi.org/10.1002/jctb.743

    Article  Google Scholar 

  12. Augelletti R, Conti M, Annesini MC (2017) Pressure swing adsorption for biogas upgrading: a new process configuration for the separation of biomethane and carbon dioxide. J Clean Prod 140:1390–1398. https://doi.org/10.1016/j.jclepro.2016.10.013

    Article  Google Scholar 

  13. Baeyens J, Appels L, Peng L, Dewil R (2016) The production of bio-energy by microbial (biogas through anaerobic digestion) or thermal (pyrolysis) processes. Renew Energy 96:1055. https://doi.org/10.1016/j.renene.2016.06.012

    Article  Google Scholar 

  14. Bagreev A, Rahman H, Bandosz TJ (2001) Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent. Carbon N Y 39:1319–1326. https://doi.org/10.1016/S0008-6223(00)00266-9

    Article  Google Scholar 

  15. Basso D, Castello D, Baratieri M, Fiori L (2013) Hydrothermal carbonization of waste biomass : progress report and prospect. 21st Eur. Biomass Conf. Exhib. Conf. Proc., pp 1478–1487

    Google Scholar 

  16. Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading—technology overview, comparison. Biofuels Bioprod Biorefin 7:499–511. https://doi.org/10.1002/bbb.1423

    Article  Google Scholar 

  17. Castellani B, Rossi F, Filipponi M, Nicolini A (2014) Hydrate-based removal of carbon dioxide and hydrogen sulphide from biogas mixtures: Experimental investigation and energy evaluations. Biomass Bioenerg 70:330–338

    Article  Google Scholar 

  18. Bong CPC, Lim LY, Lee CT, Klemeš JJ, Ho CS, Ho WS (2018) The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion—a review. J Clean Prod 172:1545–1558. https://doi.org/10.1016/j.jclepro.2017.10.199

    Article  Google Scholar 

  19. Botom ML, Poletto P, Junges J, Perondi D, Dettmer A, Godinho M (2017) Preparation and characterization of a metal-rich activated carbon from CCA-treated wood for CO2 capture. Chem Eng J 321:614–621. https://doi.org/10.1016/j.cej.2017.04.004

    Article  Google Scholar 

  20. Bradburn K (2014) CanBio report on the status of bioenergy in Canada https://www.fpac.ca/wp-content/uploads/2014_CanBio_Report.pdf. Accessed 26th Nov 2017

  21. Busch G (2013) Biogas technology. In: Yang ST, El-Enshasy HA, Thongchul N (eds), Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, pp. 279–291

    Google Scholar 

  22. CAPP (2015) The facts on: Canada’s natural gas https://www.capp.ca/publications-and-statistics/publications/272337. Accessed 21st Nov 2017

  23. Chandra R, Vijay VK, Subbarao PMV (2012) Vehicular quality biomethane production from biogas by using an automated water scrubbing system. ISRN Renew Energy 2012:1–6. https://doi.org/10.5402/2012/904167

    Article  Google Scholar 

  24. Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8. https://doi.org/10.1016/S0960-1481(00)00019-7

    Article  Google Scholar 

  25. da Silva Santos MP (2011) Advanced modelling of PSA processes for biogas upgrading. (Master’s thesis, University of Porto, Porto, Portugal). Retrieved from https://repositorio-aberto.up.pt/bitstream/10216/61452/1/000149424.pdf

  26. da Silva Santos MP, Grande CA, Rodrigues E (2011) New cycle configuration to enhance performance of kinetic PSA processes. Chem Eng Sci 66:1590–1599. https://doi.org/10.1016/j.ces.2010.12.032

    Article  Google Scholar 

  27. Dahunsi SO, Oranusi S, Efeovbokhan VE (2017) Cleaner energy for cleaner production: modeling and optimization of biogas generation from Carica papayas (Pawpaw) fruit peels. J Clean Prod 156:19–29. https://doi.org/10.1016/j.jclepro.2017.04.042

    Article  Google Scholar 

  28. DeBruyn J, Hilborn D (2015) Anaerobic digestion basics: factsheet. https://www.omafra.gov.on.ca/english/engineer/facts/07-057.htm. Accessed 21st Sept 2016

  29. Do DD (1998) Adsorption analysis: equilibria and kinetics, 1st edn. Imperial College Press, London

    Book  Google Scholar 

  30. Dodevski V, Janković B, Stojmenović M, Krstić S, Popović J, Pagnacco MC, Popović M, Pašalić S (2017) Plane tree seed biomass used for preparation of activated carbons (AC) derived from pyrolysis. Modeling the activation process. Colloids Surfaces A Physicochem Eng Asp 522:83–96. https://doi.org/10.1016/j.colsurfa.2017.03.003

    Article  Google Scholar 

  31. Duan X, Srinivasakannan C, Wang X, Wang F, Liu X (2017) Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation. J Taiwan Inst Chem Eng 70:374–381. https://doi.org/10.1016/j.jtice.2016.10.036

    Article  Google Scholar 

  32. Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F (2017) Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochim Acta 229:219–228. https://doi.org/10.1016/j.electacta.2017.01.152

    Article  Google Scholar 

  33. Enbridge Gas Distribution (2018).Gas analysis—January 2018 Ontario https://www.enbridgegas.com/assets/docs/VictoriaSquare Station-Jan. 2018.pdf. Accessed 2nd Feb 2018

  34. European Biogas Association (2015) EBA biomethane & biogas report. https://european-biogas.eu/2015/12/16/biogasreport2015/. Accessed 24th July 2017

  35. Faramawy S, Zaki T, Sakr AA (2016) Natural gas origin, composition, and processing: a review. J Nat Gas Sci Eng 34:34–54. https://doi.org/10.1016/j.jngse.2016.06.030

    Article  Google Scholar 

  36. Favre E, Bounaceur R, Roizard D (2009) Biogas, membranes and carbon dioxide capture. J Memb Sci 328:11–14. https://doi.org/10.1016/j.memsci.2008.12.017

    Article  Google Scholar 

  37. Foo KY, Hameed BH (2011) Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation. Bioresour Technol 102:9794–9799. https://doi.org/10.1016/j.biortech.2011.08.007

    Article  Google Scholar 

  38. Grande CA (2012) Advances in pressure swing adsorption for gas separation. ISRN Chem Eng 2012:1–13. https://doi.org/10.5402/2012/982934

    Article  Google Scholar 

  39. Grande CA (2011) Biogas upgrading by pressure swing adsorption. In: Bernardes DMADS (ed), Biofuel’s engineering process technology. InTech, Oslo, pp 65–84

    Google Scholar 

  40. Grande CA, Cavenati S, Rodrigues AE (2008) Separation column and pressure swing adsorption process for gas purification. WO2008072215A2

    Google Scholar 

  41. Grande CA, Cavenati S, Silva FAD (2005) Carbon molecular sieves for hydrocarbon separations by adsorption. Ind Eng Chem Res 44:7218–7227. https://doi.org/10.1021/ie050376r

    Article  Google Scholar 

  42. Grande CA, Ribeiro RPL, Oliveira ELG, Rodrigues AE (2009) Electric swing adsorption as emerging CO2 capture technique. Energy Proc 1:1219–1225. https://doi.org/10.1016/j.egypro.2009.01.160

    Article  Google Scholar 

  43. Grande CA, Rodrigues AE (2007a) Biogas to fuel by vacuum pressure swing adsorption I. Behavior of equilibrium and kinetic-based adsorbents. Ind Eng Chem Res 46:4595–4605. https://doi.org/10.1021/ie061341+

  44. Grande CA, Rodrigues AE (2007b) Layered vacuum pressure-swing adsorption for biogas upgrading. Ind Eng Chem 46:7844–7848. https://doi.org/10.1021/ie070942d

  45. Gratuito MKB, Panyathanmaporn T, Chumnanklang RA, Sirinuntawittaya N, Dutta A (2008) Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresour Technol 99:4887–4895. https://doi.org/10.1016/j.biortech.2007.09.042

    Article  Google Scholar 

  46. Greenlane, Flotech, (2011) Flotech/Greenlane Company Overview https://www2.hamilton.ca/nr/rdonlyres/5d6ba30e-ed94-427a-a21c-132ff9947abd/0/flotechgreenlaneoverviewmarch11woodward1.pdf. Accessed 6th Oct 2016

  47. Guangzhi Y, Jinyu Y, Yuhua Y, Zhihong T, Dengguang Y (2017) Preparation and CO2 adsorption properties of porous carbon from camphor leaves by hydrothermal carbonization and sequential KOH activation. RSC Adv 7:4152–4160. https://doi.org/10.1039/C6RA25303B

    Article  Google Scholar 

  48. Ham J Van (2008) Canada’s fossil energy future the way forward on carbon capture and storage. https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/www/pdf/com/resoress/publications/fosfos/fosfos-eng.pdf. Accessed 8th March 2017

  49. Hamon L, Serre C, Devic T, Loiseau T, Millange F (2009) Comparative study of hydrogen sulfide adsorption in the MIL-53 (Al, Cr, Fe), MIL-47 (V), MIL-100 (Cr), and MIL-101 (Cr) metal—organic frameworks at room temperature. J Am Chem Soc 131:8775–8777. https://doi.org/10.1021/ja901587t

    Article  Google Scholar 

  50. Harris SH, Smith RL, Barker CE (2008) Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals. Int J Coal Geol 76:46–51. https://doi.org/10.1016/j.coal.2008.05.019

    Article  Google Scholar 

  51. Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi G, Jones CW (2008) Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J Am Chem Soc 130:2902–2903. https://doi.org/10.1021/ja077795v

    Article  Google Scholar 

  52. Ho N (2012) Modeling hydrogen sulfide adsorption by activated carbon made from anaerobic digestion by-product (Master’s Thesis, University of Toronto, Toronto, Canada) Retrieved from https://tspace.library.utoronto.ca/handle/1807/32575

  53. Holm-nielsen JB, Seadi TA, Oleskowicz-popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484. https://doi.org/10.1016/j.biortech.2008.12.046

    Article  Google Scholar 

  54. Horikawa MS, Rossi M, Gimenes ML, Costa CM, da Silva MG (2004) Chemical absorption of H2S for biogas purification. Brazilian J Chem Eng 21:415–422

    Article  Google Scholar 

  55. Hsisheng T, Yeh T-S, Shu L-Y (2012) Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon N. Y. 36, pp 1387–1395. https://doi.org/10.1016/S0008-6223(98)00127-4

  56. IEA (2016) Introduction and scope. World energy outlook 2016. International Energy Agency, Paris, pp 31–55

    Google Scholar 

  57. IEA (2019) Natural Gas Information, Statistics report—September-2019. https://www.iea.org/reports/natural-gas-information-2019

  58. Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production-a review. Renew Sustain Energy Rev 11:1966–2005. https://doi.org/10.1016/j.rser.2006.03.013

    Article  Google Scholar 

  59. Kadam R, Panwar NL (2017) Recent advancement in biogas enrichment and its applications. Renew Sustain Energy Rev 73:892–903. https://doi.org/10.1016/j.rser.2017.01.167

    Article  Google Scholar 

  60. Kajat B (2006) Bioenergy and biofuels: Canadian industry and market opportunities. https://www.compost.org/CCC_Science_Web_Site/pdf/Biogas/BioenergyReport.pdf. Accessed 14th Nov 2016

  61. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  Google Scholar 

  62. Kan Y, Yue Q, Li D, Wu Y, Gao B (2017) Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal. J Taiwan Inst Chem Eng 71:494–500. https://doi.org/10.1016/j.jtice.2016.12.012

    Article  Google Scholar 

  63. Kasikamphaiboon P, Chungsiriporn J, Bunyakan C, Wiyaratn W (2013) Simultaneous removal of CO2 and H2S using MEA solution in a packed column absorber for biogas upgrading. Songklanakarin J Sci Technol 35:683–691. https://doi.org/10.1016/j.energy.2010.04.014

    Article  Google Scholar 

  64. Kelleher Robins (2013) Canadian biogas study technical document. https://www.biogasassociation.ca/bioExp/images/uploads/documents/2014/biogas_study/Canadian_Biogas_Study_Technical_Document_Dec_2013.pdf. Accessed 12th Dec 2016

  65. Kim TH (2013) Pretreatment of lignocellulosic biomass. In: Yang ST, El-Enshasy HA, Thongchul N (eds), Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, pp 91–109

    Google Scholar 

  66. Knaebel KS, Hill FB (1985) Pressure swing adsorption: development of an equilibrium theory for gas separations. J Chem Eng Sci 40:2351–2360. https://doi.org/10.1016/0009-2509(85)85139-3

    Article  Google Scholar 

  67. Knaebel KS (2008) Adsorption. In: Albright LF (ed) Albright’s chemical engineering handbook. CRC Press, Boca Raton, pp 1119–1172

    Chapter  Google Scholar 

  68. Korres NE (2013) Bioenergy production by anaerobic digestion : using agricultural biomass and organic wastes. In: O’Kiely P, Benzie JAH, West J (eds), New York, pp 137–258

    Google Scholar 

  69. Kwaśny J, Balcerzak W (2016) Sorbents used for biogas desulfurization in the adsorption process. Pol J Environ Stud 25:37–43. https://doi.org/10.15244/pjoes/60259

  70. Lau LC, MohamadNor N, Lee KT, Mohamed AR (2016) Adsorption isotherm, kinetic, thermodynamic and breakthrough curve models of H2S removal using CeO2/NaOH/PSAC. Int J Petrochem Sci Eng 1:1–10. https://doi.org/10.15406/ipcse.2016.01.00009

  71. Leonzio G (2016) Upgrading of biogas to bio-methane with chemical absorption process: simulation and environmental impact. J Clean Prod 131:364–375. https://doi.org/10.1016/j.jclepro.2016.05.020

    Article  Google Scholar 

  72. Lestinsky P, Vecer M, Navratil P, Stehlik P (2015) The removal of CO2 from biogas using a laboratory PSA unit: design using breakthrough curves. Clean Technol Environ Policy 17:1281–1289. https://doi.org/10.1007/s10098-015-0912-2

    Article  Google Scholar 

  73. Li H, Larsson E, Thorin E, Dahlquist E, Yu X (2015) Feasibility study on combining anaerobic digestion and biomass gasification to increase the production of biomethane. Energy Convers Manag 100:212–219. https://doi.org/10.1016/j.enconman.2015.05.007

    Article  Google Scholar 

  74. Li W, Li Q, Zheng L, Wang Y, Zhang J, Yu Z, Zhang Y (2015) Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour Technol 194:276–282. https://doi.org/10.1016/j.biortech.2015.06.112

    Article  Google Scholar 

  75. Li S, Han K, Li J, Li M, Lu C (2017) Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater 243:291–300. https://doi.org/10.1016/j.micromeso.2017.02.052

    Article  Google Scholar 

  76. Lijó L, González-García S, Bacenetti J, Fiala M, Feijoo G, Moreira MT (2014) Assuring the sustainable production of biogas from anaerobic mono-digestion. J Clean Prod 72:23–34. https://doi.org/10.1016/j.jclepro.2014.03.022

    Article  Google Scholar 

  77. Liu J, Reddy KP, Gadkaree PK (2014) Method for making alkali activated carbon. US201408809231B2

    Google Scholar 

  78. Llewellyn PL, Hamon L, Devic T, Ghoufi A, Clet G, Driver G, Beek WV, Jolimaı E (2009) Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53 (Cr) MOF. J Am Chem Soc 131:17490–17499. https://doi.org/10.1021/ja907556q

    Article  Google Scholar 

  79. Lozano-castell D, Lozar JPM, Falco C, Titirici M-M, Amoros DC (2013) Porous biomass-derived carbons : activated carbons. In: Titirici MM (Ed), Sustainable carbon materials from hydrothermal processes. Wiley, pp 75–100

    Google Scholar 

  80. Luo L (2013) Intensification of adsorption process in porous media. In: Heat and mass transfer intensification and shape optimization: a multi-scale approach. pp 19–43. https://doi.org/10.1007/978-1-4471-4742-8

  81. Machnikowski J, Kierzek K, Lis K, Machnikowska H, Czepirski L (2010) Tailoring porosity development in monolithic adsorbents made of KOH-activated pitch coke and furfuryl alcohol binder for methane storage. Energy Fuels 24:3410–3414. https://doi.org/10.1021/ef901536y

    Article  Google Scholar 

  82. Mahmood T, Ali R, Naeem A, Hamayun M, Aslam M (2017) Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology. Process Saf Environ Prot 109:548–563. https://doi.org/10.1016/j.psep.2017.04.024

    Article  Google Scholar 

  83. Mamun MRA, Torii S (2017) Enhancement of methane concentration by removing contaminants from biogas mixtures using combined method of absorption and adsorption. Int J Chem Eng 2017:1–9. https://doi.org/10.1155/2017/7906859

    Article  Google Scholar 

  84. Marzbali MH, Esmaieli M, Abolghasemi H, Marzbali MH (2016) Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: a batch study. Process Saf Environ Prot 102:700–709. https://doi.org/10.1016/j.psep.2016.05.025

    Article  Google Scholar 

  85. Meijden CM Van Der, Drift A Van der, Vreugdenhil BJ, Smit R, Rabou LPLM (2011) Large scale production of Biomethane from wood. In: International gas union research conference. Energy Research Center of the Netherlands, Seoul, pp 1–17

    Google Scholar 

  86. Micale C (2015) Bio-methane generation from biogas upgrading by semi-permeable membranes: an experimental, numerical and economic analysis. Energy Proc 82:971–977. https://doi.org/10.1016/j.egypro.2015.11.854

    Article  Google Scholar 

  87. Michel R, Mischler N, Azambre B, Finqueneisel G, Machnikowski J, Rutkowski P, Zimny T, Weber JV (2006) Miscanthus × Giganteus straw and pellets as sustainable fuels and raw material for activated carbon. Environ Chem Lett 4:185–189. https://doi.org/10.1007/s10311-006-0043-4

    Article  Google Scholar 

  88. Miltner M, Makaruk A, Harasek M (2017) Review on available biogas upgrading technologies and innovations towards advanced solutions. J Clean Prod 161:1329–1337. https://doi.org/10.1016/j.jclepro.2017.06.045

    Article  Google Scholar 

  89. Molino A, Nanna F, Iovane P (2015) Low pressure biomethane production by anaerobic digestion (AD) for the smart grid injection. Fuel 154:319–325. https://doi.org/10.1016/j.fuel.2015.03.054

    Article  Google Scholar 

  90. Mopoung S, Moonsri P, Palas W, Khumpai S (2015) Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution. Sci World J 2015:1–9. https://doi.org/10.1155/2015/415961

    Article  Google Scholar 

  91. Nahar G, Mote D, Dupont V (2017) Hydrogen production from reforming of biogas: review of technological advances and an Indian perspective. Renew Sustain Energy Rev 76:1032–1052. https://doi.org/10.1016/j.rser.2017.02.031

    Article  Google Scholar 

  92. Niesner J, Jecha D, Stehlík P (2013) Biogas upgrading technologies: state of art review in European region. Chem Eng Trans 35:517–522. https://doi.org/10.3303/CET1335086

    Article  Google Scholar 

  93. Nock WJ, Walker M, Kapoor R, Heaven S (2014) Modeling the water scrubbing process and energy requirements for CO2 capture to upgrade biogas to biomethane. Ind Eng Chem Res 53:12783–12792. https://doi.org/10.1021/ie501280p

    Article  Google Scholar 

  94. Panjičko M, Zupančič GD, Fanedl L, Logar RM, Tišma M, Zelić B (2017) Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. J Clean Prod 166:519–529. https://doi.org/10.1016/j.jclepro.2017.07.197

    Article  Google Scholar 

  95. Pari G, Darmawan S, Prihandoko B (2014) Porous carbon spheres from hydrothermal carbonization and KOH activation on cassava and tapioca flour raw material. Proc Environ Sci 20:342–351. https://doi.org/10.1016/j.proenv.2014.03.043

    Article  Google Scholar 

  96. Petersson A, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid, 1st edn. IEA Bioenergy, Stockholm

    Google Scholar 

  97. Petersson A, Wellinger A (2009) Biogas upgrading technologies–developments and innovations, 1st ed. IEA Bioenergy

    Google Scholar 

  98. Plaza-Recobert M, Trautwein G, Pérez-Cadenas M, Alcañiz-Monge J (2017) Preparation of binderless activated carbon monoliths from cocoa bean husk. Microporous Mesoporous Mater 243:28–38. https://doi.org/10.1016/j.micromeso.2017.02.015

    Article  Google Scholar 

  99. Pobeheim H, Munk B, Lindorfer H, Guebitz GM (2011) Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res 45:781–787. https://doi.org/10.1016/j.watres.2010.09.001

    Article  Google Scholar 

  100. Rashed M, Mamun A, Torii S (2015) Removal of H2S and H2O by chemical treatment to upgrade methane of biogas generated from anaerobic co-digestion of organic biomass waste. IPASJ Int J Mech Eng 3:42–52

    Google Scholar 

  101. Rasi S (2009) Biogas composition and upgrading to biomethane (Doctoral Dissertation, University of Jyvaskyla, Jyvaskyla, Finland). Retrieved from https://urn.fi/URN:ISBN:978-951-39-3618-1

  102. Rauch R, Hrbek J, Hofbauer H (2014) Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdiscip. Rev Energy Environ 3:343–362. https://doi.org/10.1002/wene.97

  103. Ray NHS, Swain PR, Mohanty MK, Mohanty RC (2014) A case study of biogas upgradation by water scrubbing: laboratory model for purification and effective storage in LPG cylinders for cooking applications. Int J Adv Eng Res Sci 1:68–75

    Google Scholar 

  104. Rezaei F, Webley P (2010) Structured adsorbents in gas separation processes. Sep Purif Technol 70:243–256. https://doi.org/10.1016/j.seppur.2009.10.004

    Article  Google Scholar 

  105. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenerg 35:1633–1645. https://doi.org/10.1016/j.biombioe.2011.02.033

    Article  Google Scholar 

  106. Sato A, Terashima H, Takei Y (2014) Monolith adsorbent and method and apparatus for adsorbing samples with the same. US201408795410B2

    Google Scholar 

  107. Saxena R, Singh VK, Kumar EA (2014) Carbon dioxide capture and sequestration by adsorption on activated carbon. Energy Proc 54:320–329. https://doi.org/10.1016/j.egypro.2014.07.275

    Article  Google Scholar 

  108. Sevilla M, Fuertes AB, Demir-cakan R (2013) Applications of hydrothermal carbon in modern nanotechnology. In: Titirici MM (ed), Sustainable carbon materials from hydrothermal processes. Wiley, pp 213–294

    Google Scholar 

  109. Shah IK, Pre P, Alappat BJ (2013) Steam regeneration of adsorbents: an experimental and technical review. Chem Sci Trans 2:1078–1088. https://doi.org/10.7598/cst2013.545

    Article  Google Scholar 

  110. Shahin O, Saka C (2013) Preparation and characterization of activated carbon from acorn shell by physical activation with H2O-CO2 in two-step pretreatment. Bioresour Technol 136:163–168. https://doi.org/10.1016/j.biortech.2013.02.074

    Article  Google Scholar 

  111. Shao P, Dal-cin M, Kumar A, Li H, Paul D (2012) Design and economics of a hybrid membrane—temperature swing adsorption process for upgrading biogas. J Memb Sci 413–414:17–28. https://doi.org/10.1016/j.memsci.2012.02.040

    Article  Google Scholar 

  112. Shen C, Yu J, Li P, Grande CA, Rodrigues AE (2011) Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads. Adsorption 17:179–188. https://doi.org/10.1007/s10450-010-9298-y

    Article  Google Scholar 

  113. Shen Y, Linville JL, Urgun-demirtas M, Mintz MM, Snyder SW (2015) An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs ) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renew Sustain Energy Rev 50:346–362. https://doi.org/10.1016/j.rser.2015.04.129

    Article  Google Scholar 

  114. Silva LA da, Borges SMS, Paulino PN, Fraga MA, Oliva ST de, Marchetti SG, Rangel M do C (2017) Methylene blue oxidation over iron oxide supported on activated carbon derived from peanut hulls. Catal Today 289:237–248. https://doi.org/10.1016/j.cattod.2016.11.036

  115. Singhal S, Agarwal S, Arora S, Sharma P, Singhal N (2017) Upgrading techniques for transformation of biogas to bio-CNG : a review. Int J Energy Res. https://doi.org/10.1002/er.3719

  116. Song M, Jin B, Xiao R, Yang L, Wu Y, Zhong Z, Huang Y (2013) The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass Bioenerg 48:250–256. https://doi.org/10.1016/j.biombioe.2012.11.007

    Article  Google Scholar 

  117. Sricharoenchaikul V, Pechyen C, Aht-ong D (2008) Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy Fuels 22:31–37. https://doi.org/10.1021/ef700285u

    Article  Google Scholar 

  118. Suhas, Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076. Doi: https://doi.org/10.1016/j.biortech.2016.05.106

  119. Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sustain Energy Rev 51:521–532. https://doi.org/10.1016/j.rser.2015.06.029

    Article  Google Scholar 

  120. Sun Y, Li H, Li G, Gao B, Yue Q, Li X (2016) Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresour Technol 217:239–244. https://doi.org/10.1016/j.biortech.2016.03.047

    Article  Google Scholar 

  121. Techsci Research (2016) Global Activated Carbon Market Competition Forecast and Opportunities, 2011–2021. https://www.techsciresearch.com/report/global-activated-carbon-market-by-type-powdered-activated-carbon-granular-activated-carbon-and-others-by-raw-material-wood-coconut-shells-coal-and-others-by-application-competition-forecast-and-opportunities-2011-202. Accessed 21st Aug 2017

  122. Thakur GSRS, Kaistha N (2011) Process intensification in PSA processes for upgrading synthetic landfill and lean natural gases. Adsorption 17:121–133. https://doi.org/10.1007/s10450-010-9302-6

    Article  Google Scholar 

  123. Tounsadi H, Khalidi A, Machrouhi A, Farnane M, Elmoubarki R, Elhalil A, Sadiq M, Barka N (2016) Highly efficient activated carbon from Glebionis coronaria L. biomass: Optimization of preparation conditions and heavy metals removal using experimental design approach. J Environ Chem Eng 4:4549–4564. https://doi.org/10.1016/j.jece.2016.10.020

    Article  Google Scholar 

  124. TransCanada Pipelines, Canadian Pipelines, Canada Alliance, Canadian Mainline, North Baja, Mainline Tariff (2016) Gas Quality Specifications TransCanada and other pipelines, pp 1–2

    Google Scholar 

  125. Tromly K (2001) Renewable energy: an overview https://www.nrel.gov/docs/fy01osti/27955.pdf. Accessed 24th Dec 2016

  126. Turco M (2016) Processes of biogas production : anaerobic digestion and thermal gasification. In: Treatment of biogas for feeding high temperature fuel cells. pp 1–29. Doi: https://doi.org/10.1007/978-3-319-03215-3

  127. TUV (2012) Biogas To Biomethane Technology Review, 1st edn. Intelligent Energy Europe, Vienna

    Google Scholar 

  128. US Energy (2017a) AEO 2017 with projections to 2050. Annu Energy Outlook 2017 1–127

    Google Scholar 

  129. US Energy (2017b) Renewable natural gas (biomethane) production. https://www.afdc.energy.gov/fuels/natural_gas_renewable.html. Accessed 24th Jul 2017

  130. Vemula RR, Kothare MV, Sircar S (2015) Anatomy of a rapid pressure swing adsorption process performance. AIChE 61:2008–2015. https://doi.org/10.1002/aic.14779

    Article  Google Scholar 

  131. Venkatesan S (2013) Adsorption. In: Ramaswamy S, Huang HJ, Ramarao BV (eds), Separation and purification technologies in biorefineries. Shell Global Solutions International, pp 103–148

    Google Scholar 

  132. Wang D, Ai P, Yu L, Tan Z, Zhang Y (2015) Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation. Biosyst Eng 132:47–55. https://doi.org/10.1016/j.biosystemseng.2015.02.007

    Article  Google Scholar 

  133. Wang S, Ruan Y, Zhou W, Li Z, Wu J, Liu D (2018) Net energy analysis of small-scale biogas self-supply anaerobic digestion system operated at psychrophilic to thermophilic conditions. J Clean Prod 174:226–236. https://doi.org/10.1016/j.jclepro.2017.10.186

    Article  Google Scholar 

  134. West Virginia University (2015) Production and application of highly porous activated carbon (HPAC) materials from bioenergy crops https://portal.nifa.usda.gov/web/crisprojectpages/1007044-production-and-application-of-highly-porous-activated-carbon-hpac-materials-from-bioenergy-crops.html. Accessed 22nd Aug 2017

  135. Wheeldon I, Caners C, Karan K, Peppley B (2007) Utilization of biogas generated from ontario wastewater treatment plants in solid oxide fuel Cell systems: a process modeling study. Int J Green Energy 4:221–231. https://doi.org/10.1080/15435070601015585

    Article  Google Scholar 

  136. Xebec Adsorption Inc. (2015) Xebec Methane Upgrading https://www.xebecinc.com/pdf/BGX_biogas-brochure_2015_12_single.pdf. Accessed 6th Oct 2016

  137. Xu J, Chen L, Qu H, Jiao Y, Xie J, Xing G (2014) Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl Surf Sci 320:674–680. https://doi.org/10.1016/j.apsusc.2014.08.178

    Article  Google Scholar 

  138. Yang RT (2003) Adsorbents: fundamentals and applications, 1st edn. Wiley, New Jersey

    Book  Google Scholar 

  139. Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131. https://doi.org/10.1016/j.jtice.2015.02.032

    Article  Google Scholar 

  140. Yousef AMI, Eldrainy YA, El-maghlany WM, Attia A (2016) Upgrading biogas by a low-temperature CO2 removal technique. Alexandria Eng J 55:1143–1150. https://doi.org/10.1016/j.aej.2016.03.026

    Article  Google Scholar 

  141. Zhang Z, Yan Y, Zhang L, Chen Y, Ran J, Pu G, Qin C (2014) Theoretical study on CO2 absorption from biogas by membrane contactors: effect of operating parameters. Ind Eng Chem Res 53:14075–14083. https://doi.org/10.1021/ie502830k

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the NSERC Discovery Grant No. 400495 and Shrimp Canada, 67 Watson Rd. S (Unit -2), Guelph, Ontario N1L 1E3, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan R. Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garnaik, P.P., Pradhan, R.R., Chiang, Y.W., Dutta, A. (2021). Biomass-Based CO2 Adsorbents for Biogas Upgradation with Pressure Swing Adsorption. In: Goel, M., Satyanarayana, T., Sudhakar, M., Agrawal, D.P. (eds) Climate Change and Green Chemistry of CO2 Sequestration. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0029-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0029-6_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0028-9

  • Online ISBN: 978-981-16-0029-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics