Skip to main content
Log in

Process intensification in PSA processes for upgrading synthetic landfill and lean natural gases

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Process intensification aims at reducing the size of equipment by orders of magnitude and is actively perused in separation processes. Its feasibility in Pressure Swing Adsorption (PSA) processes has been explored. A 4-bed PSA and a 3-bed PSA, which emulate the moving bed processes, and duplex PSA and a modified duplex PSA have been selected for the exploratory studies. Simulation studies on the separation of a mixture of CH4–CO2 over 5A zeolite were carried out to compare the performance of these processes. An index has been proposed to quantify the process intensification. The 3-bed PSA and the modified duplex PSA exhibited superior performance compared to the other two for a purity of 99.9 mol% of both the products. However, the performances of the processes other than duplex were comparable when purities were set at 95 mol%. In 3-bed PSA a modest process intensification of four times reduction in size and two times reduction in energy requirement appears to be feasible if benchmarked against the PSA based on the variant of the Skarstrom cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Langmuir parameter (m3/mol)

c :

Concentration in gas phase (mol/m3)

C A :

Cost of adsorbent (thousand US $/kg of adsorbent)

C AA :

Annual cost of adsorbent (thousand US $/y⋅(mol/s))

C AC :

Annual capital cost of adsorber (thousand US $/y⋅(mol/s))

C AE :

Annual cost of energy (thousand US $/y⋅(mol/s))

C AR :

Annual running cost (thousand US $/y⋅(mol/s))

C E :

Energy cost (thousand US $/kWh)

C LO :

Cost of component loss (thousand US $/y⋅(mol/s))

d p :

Particle diameter (mm)

D :

Diameter of bed (mm)

D L0 :

Dispersion coefficient (m2/s)

D M :

Molecular diffusivity (m2/s)

E :

Energy (kJ/mol⋅feed)

f :

Friction factor

g c :

Gravitational constant (m/s2)

\(I_{PI} , I_{PI}'\) :

Index for process intensification (thousand US $/y⋅(mol/s))

k i :

Linear driving force constant (s−1)

L :

Bed length (m)

L e :

Equivalent length of the valve (m)

n :

Number of moles

N :

Number of components

P :

Pressure (bar)

\(\mathcal{P}\) :

Productivity of CH4 (LSTP/h⋅kg of adsorbent)

P H :

Adsorption pressure (bar)

P I :

Intermediate desorption pressure (bar)

P L :

Desorption pressure (bar)

P1, P2:

Pressures used in (9) (bar)

q :

Amount adsorbed in solid phase (mol/m3)

q e :

Amount adsorbed in solid phase at equilibrium with gas phase (mol/m3)

q s :

Saturation constant (mol/m3)

Q T :

Total amount adsorbed in solid phase (mol/m3)

R :

Universal Gas constant (bar⋅m3/mol⋅K)

R E , R R :

Extract, Raffinate reflux ratio

T :

Operating temperature (K)

t :

Time (s)

t f :

Feed step time (s)

t Ib :

Intermediate blowdown time (s)

t fb :

Final blowdown time (s)

v f :

Superficial velocity (m/s)

x :

Mole fraction in gas phase

x f :

Mole fraction of CO2 in feed

X :

Mole fraction of CO2 in gas phase

Y :

Mole fraction of CO2 in solid phase

z :

Axial position in a adsorption bed (m)

ε B :

Bed voidage

μ :

Viscosity of gas (kg/m⋅s)

γ :

Atomicity of gas

ρ b :

Bulk density of bed (kg/m3)

ρ g :

Density of gas (kg/m3)

i :

Component i

References

  • Babicki, M., Hall, A.: PSA Technology hits the fast lane. http://www.xebecinc.com/pdf/e_h2x_fast_lane.pdf (2003). Accessed 23 April 2010

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Layered pressure swing adsorption for methane recovery from CH4/CO2/N2 streams. Adsorption 11, 549–554 (2005a)

    Article  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Upgrade of methane from landfill gas by pressure swing adsorption. Energy Fuels 19, 2545–2555 (2005b)

    Article  CAS  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy Fuels 20, 2648–2659 (2006a)

    Article  CAS  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas. Chem. Eng. Sci. 61, 3893–3906 (2006b)

    Article  CAS  Google Scholar 

  • Chen, Y.D., Ritter, J.A., Yang, R.T.: Nonideal Adsorption from multicomponent gas mixtures at elevated pressures on a 5A molecular sieve. Chem. Eng. Sci. 45, 2877–2897 (1990)

    Article  CAS  Google Scholar 

  • Delgado, J.A., Uguina, M.A., Sotelo, J.L., Ruiz, B., Gomes, J.M.: Fixed bed adsorption of carbon dioxide/methane mixtures on silicalite pellets. Adsorption 12, 5–18 (2006)

    Article  CAS  Google Scholar 

  • Delgado, J.A., Uguina, M.A., Sotelo, J.L., Ruiz, B., Rosario, M.: Carbon dioxide/methane separation by adsorption on sepiolite. J. Nat. Gas. Chem. 16, 235–243 (2007)

    Article  CAS  Google Scholar 

  • Ebner, A.D., Ritter, J.A.: Equilibrium theory analysis of dual reflux PSA for separation of a binary mixture. AIChE J. 50, 2418–2428 (2004)

    Article  CAS  Google Scholar 

  • Grande, C.A., Rodrigues, A.E.: Layered vacuum pressure-swing adsorption for biogas upgrading. Ind. Eng. Chem. Res. 46, 7844–7848 (2007)

    Article  CAS  Google Scholar 

  • Hirose, T.: A simple design method of a new PSA process consisting of both rectifying and stripping sections. In: Proceedings of the 2nd China-Japan-USA Symposium on Adsorption, p. 123 (1991)

    Google Scholar 

  • Huang, W.C., Chou, C.T.: A moving-finite element simulation of a pressure swing adsorption process. Comput. Chem. Eng. 21, 301–315 (1997)

    Article  CAS  Google Scholar 

  • Issac, A., Thakur, R.S., Verma, N., Kaistha, N., Rao, D.P.: Process intensification in 4-bed PSA. In: 2nd International Congress on Green Process Engineering, 14–17 June, Venice, Italy (2009)

    Google Scholar 

  • Jayaraman, A., Chiao, A.S., Padin, J., Yang, R.T., Munson, C.L.: Kinetic separation of methane/carbon dioxide by molecular sieve carbons. Sep. Sci. Technol. 37, 2505–2528 (2002)

    Article  CAS  Google Scholar 

  • Kapoor, A., Yang, R.T.: Kinetic separation of methane- carbon dioxide mixture by adsorption on molecular sieve carbon. Chem. Eng. Sci. 44, 1723–1733 (1989)

    Article  CAS  Google Scholar 

  • Kearns, D.T., Webley, P.A.: Modelling and evaluation of dual-reflux pressure swing adsorption cycles: Part I. Mathematical models. Chem. Eng. Sci. 61, 7223–7233 (2006)

    Article  CAS  Google Scholar 

  • Kim, M.B., Bae, Y.S., Choi, D.K., Lee, C.H.: Kinetic separation of landfill gas by a two bed pressure swing adsorption process packed with carbon molecular sieve: nonisothermal operation. Ind. Eng. Chem. Res. 45, 5050–5058 (2006)

    Article  CAS  Google Scholar 

  • Kulprathipanja, S.: Reactive Separation Process. Taylor & Francis, New York (2002)

    Google Scholar 

  • Kumar, P., Sivakumar, S.V., Rao, D.P.: New Duplex adsorption process for fraction of gas mixture. Indian Patent Application 1567/DEL/2006 (2006)

  • Leavitt, F.W.: Duplex adsorption process, US Patent 5,085,674 (1992)

  • Park, J.H., Kim, J.N., Cho, S.H.: Performance analysis of four-bed H2 PSA process using layered beds. AIChE J. 46, 790–802 (2000)

    Article  CAS  Google Scholar 

  • Rao, D.P., Bhowal, A., Goswami, P.S.: Process intensification in rotating packed beds (HIGEE): An appraisal. Ind. Eng. Chem. Res. 43, 1150–1162 (2004)

    Article  CAS  Google Scholar 

  • Rao, D.P., Sivakumar, S.V., Mandal, S., Kota, S., Ramprasad, B.S.G.: Novel simulated moving-bed adsorber for the fractionation of gas mixtures. J. Chromatogr. A 1069, 141–151 (2005)

    Article  CAS  Google Scholar 

  • Reay, D., Ramshaw, C., Harvey, A.: Process Intensification: Engineering for Efficiency, Sustainability and Flexibility. Butterworth-Heinemann, UK (2008)

    Google Scholar 

  • Rota, R., Wankat, P.C.: Intensification of pressure swing adsorption processes. AIChE J. 36, 1299–1311 (1990)

    Article  CAS  Google Scholar 

  • Sircar, S.: Separation of methane and carbon dioxide gas mixtures by pressure swing adsorption. Sep. Sci. Technol. 23, 519–529 (1988)

    Article  Google Scholar 

  • Sircar, S., Kumar, R., Koch, W.R., VanSloun, J.: Recovery of methane from landfill gas. US Patent 4,770,676 (1988)

  • Sivakumar, S.V.: Sharp separation and process intensification in adsorptive separation processes. Ph.D. thesis, Dept. of Chemical Eng. Indian Institute of Tech., Kanpur, India (2007)

  • Stankiewicz, A.I., Moulijn, J.A.: Process Intensification: Transforming chemical engineering. Chem. Eng. Progress, 22–34 (2000)

  • Stankiewicz, A., Moulijn, J.A.: Process intensification. Ind. Eng. Chem. Res. 41, 1920–1924 (2002)

    Article  CAS  Google Scholar 

  • Treybal, R.E.: Mass Transfer Operations. Chemical Engineering Series. McGraw-Hill, Singapore (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Thakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spoorthi, G., Thakur, R.S., Kaistha, N. et al. Process intensification in PSA processes for upgrading synthetic landfill and lean natural gases. Adsorption 17, 121–133 (2011). https://doi.org/10.1007/s10450-010-9302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9302-6

Keywords

Navigation