Skip to main content

Mitigating Global Warming Through Carbonic Anhydrase-Mediated Carbon Sequestration

  • Chapter
  • First Online:
Climate Change and Green Chemistry of CO2 Sequestration

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Industrial Revolution has led to an unprecedented rise in carbon dioxide concentrations in the atmosphere. Among various methods available for carbon capture from the industrial emissions such as flue gas, carbonic anhydrase (CA)-based carbon capture techniques have been evolved and gained immense attention in the recent years. Carbonic anhydrase (CA) is a zinc metalloenzyme, which is an essential biocatalyst for all living beings. It plays a role in accelerating the hydration and dehydration of carbon dioxide. This enzyme can be utilized in vitro for capturing carbon from industrial emissions. Thermo-alkali stable CAs from prokaryotes are the most promising candidates for biomimetic carbon sequestration owing to the high temperature of flue gas and alkaline condition needed for precipitation of calcium carbonate formed in the reaction. These CAs can be essentially immobilized on various solid supports and matrices for developing bioreactors and their continuous operation. This chapter reviews developments in utilizing CAs of prokaryotes in carbon capture technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40:321–348

    Article  Google Scholar 

  2. Adams MR, Hurd HB, Lenhart S et al (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11:19–30

    Article  Google Scholar 

  3. Adler L, Brundell J, Falkbring SO, Nyman PO (1972) Carbonic anhydrase from Neisseria sicca, strain 6021 I. Bacterial growth and purification of the enzyme. Biochim Biophys Acta Enzym 284:298–310

    Article  Google Scholar 

  4. Akdemir A, Vullo D, De Luca V et al (2013) The extremo-α-carbonic anhydrase (CA) from Sulfurihydrogenibium azorense, the fastest CA known, is highly activated by amino acids and amines. Bioorg Med Chem Lett 23:1087–1090

    Article  Google Scholar 

  5. Alber BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Nat Acad Sci U.S.A. 91:6909–6913

    Google Scholar 

  6. Alber BE, Ferry JG (1996) Characterization of heterologously produced carbonic Anhydrase from Methanosarcina thermophila J Bacteriol 178:3270–3274

    Google Scholar 

  7. Alvizo O, Nguyen LJ, Savile CK et al (2014) Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proc Nat Acad Sci USA 111:16436–16441

    Article  Google Scholar 

  8. Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17: 357–366

    Google Scholar 

  9. Angeli A, Del Prete S, Alasmary FA et al (2018) The first activation studies of the η-carbonic anhydrase from the malaria parasite Plasmodium falciparum with amines and amino acids. Bioorg Chem 80:94–98

    Google Scholar 

  10. Angeli A, Alasmary FA, Del Prete S et al (2018) The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom Thalassiosira weissflogii is effectively activated by amines and amino acids. J Enzyme Inhib Med Chem 33:680–685

    Article  Google Scholar 

  11. Angeli A, Donald WA, Parkkila S, Supuran CT (2018) Activation studies with amines and amino acids of the β-carbonic anhydrase from the pathogenic protozoan Leishmania donovani chagasi. Bioorg Chem 78:406–410

    Google Scholar 

  12. Aspelund A, Molnvik MJ, DeKoeijer G (2006) Ship transport of CO2, technical solutions and analysis of costs, energy utilization, energy efficiency and CO2 emissions. Chem Eng Res Des 84:847–855

    Article  Google Scholar 

  13. Badger MR, Price GD (2003) CO2 concentrating mechanisms in Cyanobacteria: Molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  Google Scholar 

  14. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W H Freeman, New York

    Google Scholar 

  15. Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45:8624–8632

    Article  Google Scholar 

  16. Boone CD, Gill S, Habibzadegan A et al (2013) Carbonic anhydrase: an efficient enzyme with possible global implications. Int J Chem Eng 1–7

    Google Scholar 

  17. Bose H, Satyanarayana T (2016) Suitability of the alkalistable carbonic anhydrase from a polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic carbon sequestration. Bioprocess Biosyst Eng 39:1515–1525

    Article  Google Scholar 

  18. Bose H, Satyanarayana T (2017a) Utility of thermo-alkali-stable γ-CA from polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic sequestration of CO2 and as a virtual peroxidase. Environ Sci Pollut R 24:10869–10884

    Article  Google Scholar 

  19. Bose H, Satyanarayana T (2017b) Microbial carbonic anhydrases in biomimetic carbon sequestration for mitigating global warming: prospects and perspectives. Front Microbiol 8:1615

    Article  Google Scholar 

  20. Bose H, Satyanarayana T (2018) Carbonic anhydrases of extremophilic microbes and their applicability in mitigating global warming through carbon sequestration. In: Durvasula VR, Subba Rao DV (eds) Extremophiles. CRC Press, pp 249–276

    Google Scholar 

  21. Braus-Stromeyer SA, Schnappauf G, Braus GH et al (1997) Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria. J Bacteriol 179:7197–7200

    Google Scholar 

  22. Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279

    Article  Google Scholar 

  23. Capasso C, De Luca V, Carginalea V et al (2012) Characterization and properties of a new thermoactive and thermostable carbonic anhydrase. Chem Eng 27:271–276

    Google Scholar 

  24. Chirică LC, Elleby B, Jonsson BH et al (1997) The complete sequence, expression in Escherichia coli, purification and some properties of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem 24:55–760

    Google Scholar 

  25. Christer J, Wullschleger D, Stan KC et al (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696

    Article  Google Scholar 

  26. CO2 solutions. www.co2solutions.com/en/the-process. Accessed on 27th March 2019

  27. Cowan RM, Ge JJ, Qin YJ et al (2003) CO2 capture by means of an enzyme-based reactor. Ann N Y Acad Sci 984:453–469

    Article  Google Scholar 

  28. Cronk JD, Endrizzi JA, Cronk MR et al (2001) Crystal structure of E. coli β–carbonic anhydrase, an enzyme with an unusual pH–dependent activity. Prot Sci 10:911–922

    Article  Google Scholar 

  29. Da Silva EF, Booth AM (2013) Emissions from post-combustion CO2 capture plants. Environ Sci Technol 47:659–660

    Article  Google Scholar 

  30. Dahlberg L, Hoist O, Kristjansson KJ (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68

    Google Scholar 

  31. De Luca V, Vullo D, Scozzafava A et al (2013) An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorg Med Chem 21:1465–1469

    Google Scholar 

  32. Di Fiore A, Capasso C, De Luca V et al (2013) X-ray structure of the firstextremo-α-carbonic anhydrase’, a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Acta Crystallogr D 69:1150–1159

    Article  Google Scholar 

  33. Dutreuil S, Bopp L, Tagliabue A (2009) Impact of enhanced vertical mixing on marine biogeochemistry: lessons for geo-engineering and natural variability. Biogeosciences 6:901–912

    Article  Google Scholar 

  34. Elleby B, Chirica LC, Tu C et al (2001) Characterization of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem 268:1613–1619

    Article  Google Scholar 

  35. Faridi S, Satyanarayana T (2015) Bioconversion of industrial CO2 emissions into utilizable products. In: Chandra R (ed) Industrial waste management. CRC Press, New York, pp 111–156

    Google Scholar 

  36. Faridi S, Satyanarayana T (2016a) Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: Characteristics and applicability in flue gas CO2 sequestration. Environ Sci Pollut R 15:15236–15249

    Google Scholar 

  37. Faridi S, Satyanarayana T (2016b) Characteristics of recombinant α-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1. Int J Biol Macromol 89:659–668

    Google Scholar 

  38. Faridi S, Satyanarayana T (2018) Thermo-alkali-stable α-carbonic anhydrase of Bacillus halodurans: heterologous expression in Pichia pastoris and applicability in carbon sequestration. Environ Sci Pollut R 25:6838–6849

    Google Scholar 

  39. Faridi S, Bose H, Satyanarayana T (2017) Utility of immobilized recombinant carbonic anhydrase of Bacillus halodurans TSLV1 on the surface of modified iron magnetic nanoparticles in Carbon Sequestration. Energ Fuel 31:3002–3009

    Google Scholar 

  40. Farrell A (2011) Carbon dioxide storage in stable carbonate minerals. Basalt laboratory studies of interest to carbon capture and storage. Advisor MN Evans University of Maryland Geology 1–24

    Google Scholar 

  41. Favre N, Christ ML, Pierre AC (2009) Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. J Mol Catal B Enzym 60:163–170

    Google Scholar 

  42. Feinstein CH (1998) Pessimism perpetuated: real wages and the standard of living in Britain during and after the industrial revolution. J Econ Hist 58:625–658

    Google Scholar 

  43. Ferrer M, Martínez-Martínez M, Bargiela R et al (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9:22–34

    Article  Google Scholar 

  44. Ferry JG (2010) The gamma class of carbonic anhydrases. Biochim Biophys Acta 1804:374–381

    Article  Google Scholar 

  45. Fisher Z, Boone CD, Biswas SM, Venkatakrishnan B, Aggarwal M, Tu C, Agbandje-McKenna M, Silverman D, McKenna R (2012) Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II. Protein Eng Des Sel 25:347–355

    Google Scholar 

  46. Frost SC, McKenna R (eds) (2013) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer Science & Business Media

    Google Scholar 

  47. Fujita N, Mori H, Yura T et al (1994) Systematic sequencing of the Escherichia coli genome: analysis of the 2.4–4.1 min (110,917–193,643 bp) region. Nucleic Acids Res 22:1637–1639

    Article  Google Scholar 

  48. Garg A, Shukla PR, Kankal B et al (2017) CO2 emission in India: trends and management at sectoral, sub-regional and plant levels. Carbon Manag 8:111–123

    Article  Google Scholar 

  49. Gill SR, Fedorka-Cray PJ et al (1984) Purification and properties of the carbonic anhydrase of Rhodospirillum rubrum. Arch Microbiol 138:113–118

    Google Scholar 

  50. Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  Google Scholar 

  51. Hart A, Gnanendran N (2009) Cryogenic CO2 capture in natural gas. Energy Proc 1:697–706

    Article  Google Scholar 

  52. Haszeldine SR (2009) Carbon capture and storage: how green can black be. Science 325:1647–1652

    Article  Google Scholar 

  53. Herzog HJ (1998) Ocean sequestration of CO2—an overview. In: fourth international conference on greenhouse gas control technologies August 30–September 2 Interlaken, Switzerland 1–5

    Google Scholar 

  54. Hicks N, Vik U, Taylor P et al (2017) Using prokaryotes for carbon capture storage. Trends Biotechnol 35:22–32

    Article  Google Scholar 

  55. Horn J, Rosenband LN and Smith MR (eds) (2010) Reconceptualizing the industrial revolution. MIT press

    Google Scholar 

  56. Houghton J (2005) Global Warm Rep Progress Phys 68:1343–1403

    Article  Google Scholar 

  57. Hu H, Gao K (2008) Impacts of CO2 enrichment on growth and photosynthesis in freshwater and marine diatoms. Chin J Oceanol Limnol 26:407–414

    Article  Google Scholar 

  58. Huijgen WJ, Comans RN, Witkamp GJ (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers Manag 48:1923–1935

    Article  Google Scholar 

  59. Iliuta I, Iliuta MC (2017) Investigation of CO2 Removal by immobilized carbonic anhydrase enzyme in a hollow-fiber membrane bioreactor. AIChE J 63:2996–3007. https://doi.org/10.1002/aic.15646

    Article  Google Scholar 

  60. Iliuta I, Larachi F (2012) New scrubber concept for catalytic CO2 hydration by immobilized carbonic anhydrase II & in-situ inhibitor removal in three-phase monolith slurry reactor. Sep Purif Technol 86:199–214

    Article  Google Scholar 

  61. IPCC (Inter-governmental Panel on Climate Change) (2014) Climate change 2014 synthesis report. Cambridge University Press, Cambridge

    Google Scholar 

  62. IPCC (2013) Fourth assessment report: climate change (AR5) 2013 from IPCC website https://ipcc.ch/publications_and_data/publications_and_data_reports.shtml/. Accessed on 26th March 20179

  63. IPCC (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  64. Jahn A, Vreeland WN, DeVoe DL et al (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293

    Article  Google Scholar 

  65. Jeyakanthan J, Rangarajan S, Mridula P et al (2008) Observation of a calcium-binding site in the γ-class carbonic anhydrase from Pyrococcus horikoshii. Acta Crystallogr. D 64:1012–1019

    Article  Google Scholar 

  66. Jin X, Gruber N, Frenzel H et al (2008) The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. Biogeosciences 5:385–406

    Article  Google Scholar 

  67. Jo BH, Kang DG, Kim CS, Choi YS, Cha HJ (2012) Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere 87:1091–1096

    Google Scholar 

  68. Jo BH, Kim IG, Seo JH et al (2013) Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl Environ Microbiol 79:6697–6705

    Google Scholar 

  69. Jo BH, Seo JH, Cha JC (2014) Bacterial extremo- α-carbonic anhydrases from deep-sea hydrothermal vents as potential biocatalysts for CO2 sequestration. J Mol Catal B Enzym 109:31–39

    Article  Google Scholar 

  70. Kanbar B, Ozdemir E (2010) Thermal stability of carbonic anhydrase immobilized within polyurethane foam. Biotechnol Prog 26:1474−1480

    Google Scholar 

  71. Kanth BK, Min K, Kumari S et al (2012) Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO2 sequestration application. Appl Biochem Biotechnol 167:2341–2356

    Article  Google Scholar 

  72. Kanth BK, Jun SY, Kumari S (2014) Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: its expression and characterization for CO2 sequestration applications. Process Biochem 49:2114–2121

    Article  Google Scholar 

  73. Ki MR, Min K, Kanth BK et al (2013) Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO2 sequestration application. Bioprocess Biosyst Eng 36:375–381

    Article  Google Scholar 

  74. Kikutani S, Nakajima K, Nagasato C et al (2016) Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Nat Acad Sci USA 113:9828–9833

    Article  Google Scholar 

  75. Kindermann G, Obersteiner M, Sohngen B et al (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Nat Acad Sci USA 105:10302–10307

    Article  Google Scholar 

  76. Knudsen JN, Jensen JN, Vilhelmsen PJ, Biede O (2009) Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents. Energy Proc 1:783–790

    Article  Google Scholar 

  77. Kubler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ 22:1303–1310

    Article  Google Scholar 

  78. Kumar RSS, Ferry JG (2014) Prokaryotic carbonic anhydrases of Earth’s environment. In: Frost S, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer, Dordrecht, pp 77–87

    Google Scholar 

  79. Kumar V, Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol Lett 33: 2279–2285

    Google Scholar 

  80. Kupriyanova EV, Villarejo A, Markelova AG et al (2007) Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Microbiology 153:1149–1156

    Google Scholar 

  81. Kupriyanova EV, Sinetova MA, Markelova AG et al (2011) Extracellular β_class carbonic anhydrase of the alka-liphilic cyanobacterium Microcoleus chthonoplastes. J Photochem Photobiol B 103:78–86

    Article  Google Scholar 

  82. Kusian B, Sultemeyer D, Bowien B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184:5018–5026

    Article  Google Scholar 

  83. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  84. Lee MH, Lee SW (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genome Inform 11:114

    Article  Google Scholar 

  85. Li M, Su ZG, Janson, JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10

    Google Scholar 

  86. Li S, An L, Duan Q et al (2018) Determining the rate of carbonic anhydrase reaction in the human brain. Sci Rep 8:2328

    Google Scholar 

  87. Lim X (2015) How to make most of carbon dioxide. Nature 526:629–630

    Article  Google Scholar 

  88. Liu N, Bond GM, Abel TA et al (2005) Biomimetic sequestration of CO2 in carbonate form: role of produced waters and other brines. Fuel Process Technol 86:1615–1625

    Article  Google Scholar 

  89. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510

    Article  Google Scholar 

  90. Lucas RE (ed) (2002) Lectures on economic growth. Harvard University Press

    Google Scholar 

  91. MacAuley SR, Zimmerman SA, Apolinario EE et al (2009) The archetype γ-class carbonic anhydrase (cam) contains iron when synthesized in vivo. Biochemistry 48:817–819

    Google Scholar 

  92. McCloskey D (2004) Review of the Cambridge economic history of modern Britain. In: Floud R, Paul J (eds) Times higher education supplement, 15 Jan 2004

    Google Scholar 

  93. Meldrum NU, Roughton FJ (1933) Carbonic anhydrase. Its preparation and properties. J Physiol 80:113

    Google Scholar 

  94. Merlin C, Masters M, McAteer S (2003) Why is carbonic anhydrase essential to Escherichia coli. J Bacteriol 185:6415–6424

    Article  Google Scholar 

  95. Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082

    Article  Google Scholar 

  96. Migliardini F, De Luca V, Carginale V et al (2014) Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam. J Enzyme Inhib Med Chem 29:146–150

    Article  Google Scholar 

  97. Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46:921–926

    Article  Google Scholar 

  98. Monastersky R (1995) Iron versus the greenhouse: Oceanographers cautiously explore a global warming therapy. Sci News 148:220

    Article  Google Scholar 

  99. Nakagawa S, Shtaih Z, Banta A, Beveridge TJ et al (2005) Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. Int J Syst Evol Microbiol 55:2263–2268

    Google Scholar 

  100. Nara TY, Togashi H, Sekikawa C et al (2009) Use of zeolite to refold a disulfide-bonded protein. Colloids Surf B 68:68–73

    Article  Google Scholar 

  101. Nielsen CJ, Herrmann H, Weller C (2012) Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chem Soc Rev 41:6684–6704

    Article  Google Scholar 

  102. NOAA (2019) National oceanic and atmospheric administration. https://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed on 26th March 2019

  103. Norici A, Dalsass A, Giordano M (2002) Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. Physiol Plant 116:186–191

    Article  Google Scholar 

  104. Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications–a review. Energy 35:2610–2628

    Article  Google Scholar 

  105. Peña KL, Castel SE, de Araujo C et al (2010) Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proc Nat Acad Sci USA 107:2455–2460

    Article  Google Scholar 

  106. Prabhu C, Valechha A, Wanjari S et al (2011) Carbon composite beads for immobilization of carbonic anhydrase. J Mol Catal B Enzym 71:71–78

    Article  Google Scholar 

  107. Prabhu C, Wanjari S, Gawande S et al (2009) Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials. J Mol Catal B Enzym 60:13–21

    Article  Google Scholar 

  108. Premkumar L, Bageshwar UK, Gokhman I et al (2003) An unusual halotolerant alpha-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli. Protein Expr Purif 28:151–157

    Article  Google Scholar 

  109. Princiotta FT (2007) The role of power generation technology in mitigating global climate change. In: Cen K, Chi Y, Wang F (eds) Challenges of power engineering and environment. Springer, Berlin, pp 3–13

    Chapter  Google Scholar 

  110. Puri AK (2012) Carbon sequestration using heterotrophic bacteria

    Google Scholar 

  111. Puri AK, Satyanarayana T (2010) Carbon sequestration for mitigating disastrous effects of global warming. In: Goel M (ed) Natural and Manmade Disasters. MD Publications, New Delhi, pp 229−252

    Google Scholar 

  112. Ramanan R, Kannan K, Sivanesan SD et al (2009) Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World J Microbiol Biotechnol 25:981–987

    Article  Google Scholar 

  113. Rayalu S, Yadav R, Wanjari S et al (2012) Nanobiocatalysts for carbon capture, sequestration and valorisation. Top Catal 55:1217–1230

    Article  Google Scholar 

  114. Reddy KJ, Weber H, Bhattacharya P et al (2010) Instantaneous capture and mineralization of flue gas carbon dioxide: pilot scale study. Nat Preceed 1–11

    Google Scholar 

  115. Reynolds AJ, Verheyen TV, Adeloju SB et al (2012) Towards commercial scale post combustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol 46:3643–3654

    Article  Google Scholar 

  116. Rowlett RS, Hoffmann KM, Failing H et al (2010) Evidence for a bicarbonate “escort” site in Haemophilus influenzae β-carbonic anhydrase. Biochemistry 49:3640–3647

    Google Scholar 

  117. Russo ME, Olivieri G, Capasso C et al (2013) Kinetic study of a novel thermo-stable α-carbonic anhydrase for biomimetic CO2 capture. Enzym Microb Technol 53:271–277

    Article  Google Scholar 

  118. Sakono M, Kawashima YM, Ichinose H et al (2004) Direct refolding of inclusion bodies using reversed micelles. Biotechnol Prog 201783–1787

    Google Scholar 

  119. Santos A, Toledo-Fernandez JA, Mendoza-Serna R et al (2007) Chemically active silica aerogel− wollastonite composites for CO2 fixation by carbonation reactions. Ind Eng Chem Res 46:103–107

    Google Scholar 

  120. Shahbazi A, Nasab BR (2016) Carbon capture and storage (CCS) and its impacts on climate change and global warming. J Pet Environ Biotechnol 7:29

    Google Scholar 

  121. Shakun JD, Clark PU, He F et al (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54

    Article  Google Scholar 

  122. Sharma A, Bhattacharya A (2010) Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J Mol Catal B Enzym 67:122–128

    Article  Google Scholar 

  123. Sharma A, Bhattacharya A, Shrivastava A (2011) Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials. Enzyme Microb Technol 48:416–426

    Article  Google Scholar 

  124. Shutova T, Kenneweg H, Buchta J et al (2008) The photosystem II_associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J 27:782–791

    Article  Google Scholar 

  125. Silverman DN (1982) Carbonic anhydrase: Oxygen-18 exchange catalyzed by an enzyme with rate-contributing Proton-transfer steps. Methods Enzymol 87:732–752

    Article  Google Scholar 

  126. Silverman DN, Lindskog S (1988) The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting photolysis of water. Acc Chem Res 21:30–36

    Article  Google Scholar 

  127. Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  Google Scholar 

  128. Smith KS, Cosper NJ, Stalhandske C et al (2000) Structural and kinetic characterization of an archaeal β-class carbonic anhydrase. J Bacteriol 182:6605–6613

    Article  Google Scholar 

  129. Smith KS, Jakubzick C, Whittam TS, Ferry JG (1999) Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc Nat Acad Sci 96:15184–15189

    Article  Google Scholar 

  130. So AK, Espie GS, Williams EB et al (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. J Bacteriol 186:623–630

    Article  Google Scholar 

  131. Solomon S, Plattner GK, Knutti R et al (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U.S.A. 106:17041709

    Google Scholar 

  132. Soltes-Rak E, Mulligan ME, Coleman JR (1997) Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bacteriol 179:769–774

    Article  Google Scholar 

  133. Soong Y, Fauth DL, Howard BH (2006) CO2 sequestration with brine solution and fly ashes. Energy Converse Manage 47:1676–1685

    Article  Google Scholar 

  134. Srivastava S, Bharti RK, Verma PK et al (2015) Cloning and expression of gamma carbonic anhydrase from Serratia sp. ISTD04 for sequestration of carbon dioxide and formation of calcite. Biores Technol 188:209–213

    Google Scholar 

  135. Stadie WC, O’Brien H (1933) The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by an enzyme isolated from red blood cells. J Biol Chem 103:521–529

    Article  Google Scholar 

  136. Sterling D, Alvarez BV, Casey JR (2002) The extracellular component of a transport metabolon. Extracellular loop 4 of the human AE1 Cl/HCO3 exchanger binds carbonic anhydrase IV. J Biol Chem 277:25239–25246

    Article  Google Scholar 

  137. Sung YC, Fuchs JA (1988) Characterization of the cyn Operon in Escherichia coli K12. J Biol Chem 263:14769–14775

    Article  Google Scholar 

  138. Supuran CT (2011) Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med Chem 3:1165–1180

    Article  Google Scholar 

  139. Supuran CT (2016) How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 31:345–360

    Article  Google Scholar 

  140. Svensson R, Odenberger M, Johnsson F, Strömberg L (2004) Transportation systems for CO2––application to carbon capture and storage. Energy Convers Manag 45: 2343–2353

    Google Scholar 

  141. Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12:195–201

    Article  Google Scholar 

  142. Szreter S, Mooney G (1998) Urbanization, mortality, and the standard of living debate: new estimates of the expectation of life at birth in nineteenth—century British cities. Econ Hist Rev 51:84–112

    Google Scholar 

  143. Takami H, Nishi S, Lu J, Shimamura S, Takaki Y (2004) Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8:351–356

    Google Scholar 

  144. Trachtenberg MC, Cowan M, Smith DA et al (2009) Membrane-based, enzyme facilitated, efficient carbon dioxide capture. Energy Proc 1:353–360

    Article  Google Scholar 

  145. Traufetter G (2009) Cold carbon sink: Slowing global warming with Antarctic iron. Spiegel Online

    Google Scholar 

  146. Tripp BC, Ferry JG (2000) A structure-function study of a proton transport pathway in a novel γ-class carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39:9232–9240

    Article  Google Scholar 

  147. Tripp BC, Smith K, Ferry JG (2001) Carbonic Anhydrase: New insights for an ancient enzyme. J Biol Chem 276:48615–48618

    Article  Google Scholar 

  148. Tsouris C, Aaron DS Williams KA (2010) Is carbon capture and storage really needed? Environ Sci Technol 44:4042–4045

    Google Scholar 

  149. Ueda K, Nishida H, Beppu T (2012) Dispensabilities of carbonic anhydrase in proteobacteria. Int J Syst Evol Microbiol 2012

    Google Scholar 

  150. Umetsu M, Tsumoto K, Hara M et al (2003) How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system spectroscopic evidence for highly efficient refolding of a single-chain fv fragment. J Biol Chem 278:8979–8987

    Article  Google Scholar 

  151. Valdivia RH, Falkow S (1997) Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:2007–2011

    Article  Google Scholar 

  152. Veitch FP, Blankenship LC (1963) Carbonic anhydrases in bacteria Nature 197:76–77

    Google Scholar 

  153. Vullo D, De Luca V, Scozzafava A et al (2012) Anion inhibition studies of the fastest carbonic anhydrase (CA) known, the extremo-CA from the bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem 22:7142–7145

    Article  Google Scholar 

  154. Wanjari S, Prabhu C, Yadav R (2011) Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction. Process Biochem 46:1010−1018

    Google Scholar 

  155. Wanjari S, Prabhu C, Satyanarayana T et al (2012) Immobilization of carbonic anhydrase on mesoporous aluminosilicate for carbonation reaction. Micropor Mesopor Mat 160:151–158

    Article  Google Scholar 

  156. What is a carbon footprint—definition. https://timeforchange.org/what-is-a-carbon-footprint-definition. Accessed on 26th March 2019

  157. Wood HG, Werkman CH, Hemingway A et al (1941) Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J Biol Chem 139:367–375

    Google Scholar 

  158. Xu J, Sun J, Wang Y et al (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19:11465–11486

    Article  Google Scholar 

  159. Xu Y, Feng L, Jeffrey PD et al (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61

    Google Scholar 

  160. Yadav R, Satyanarayanan T, Kotwal S, Rayalu S (2011) Enhanced carbonation reaction using chitosan-based carbonic anhydrase nanoparticles. Curr Sci (Bangalore) 100:520–524

    Google Scholar 

  161. Yadav RR, Mudliar SN, Shekh AY et al (2012) Immobilization of carbonic anhydrase in alginate and its influence on transformation of CO2 to calcite. Process Biochem 47:585–590

    Article  Google Scholar 

  162. Yamaguchi S, Yamamoto E, Mannen T et al (2013) Protein refolding using chemical refolding additives. Biotechnology J 8:17–31

    Article  Google Scholar 

  163. Yoshimoto M, Walde P (2018) Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World J Microbiol Biotechnol 34:151

    Article  Google Scholar 

  164. Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalga. Energy Converse Manage 46:1868–1876

    Article  Google Scholar 

  165. Zhi W, Landry SJ, Gierasch LM et al (1992) Renaturation of citrate synthase: influence of denaturant and folding assistants. Prot Sci 1:522–529

    Article  Google Scholar 

  166. 2018 Was the Fourth Warmest Year on Record With Kerala and California at the receiving end, 2019. https://www.news18.com/news/world/2018-was-the-fourth-warmest-year-on-record-with-kerala-and-california-at-receiving-end-2027999.html. Accessed on 26th Mar 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bose, H., Satyanarayana, T. (2021). Mitigating Global Warming Through Carbonic Anhydrase-Mediated Carbon Sequestration. In: Goel, M., Satyanarayana, T., Sudhakar, M., Agrawal, D.P. (eds) Climate Change and Green Chemistry of CO2 Sequestration. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0029-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0029-6_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0028-9

  • Online ISBN: 978-981-16-0029-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics