Skip to main content

Toxins of Bacillus thuringiensis: A Novel Microbial Insecticide for Mosquito Vector Control

  • Chapter
  • First Online:
Molecular Identification of Mosquito Vectors and Their Management

Abstract

Mosquitoes are great threat to human health as they transmit various dreadful diseases. Many strategies have been employed to control these mosquito vectors of public health importance. Synthetic chemical insecticides have been purposely used for several years for the eradication of such mosquito vectors. However, these synthetic chemicals detrimentally create many serious conditions like development of insecticide resistance in mosquito population, environmental pollution, cellular toxicity in mammals, adverse effects on beneficial insects, and other non-target organisms. Hence, use of biological agents has attracted attention as an alternative to chemical insecticides for the control of mosquito vectors. Among these, Bacillus thuringiensis (Bt) seems to be the most important and successful microbiocontrol agent. Bacillus thuringiensis is a natural occurring, soil-borne bacteria that produces insecticidal proteins as parasporal crystals during its sporulation phase. These crystals are mainly comprised of one or more proteins, also called δ-endotoxins (Cry and Cyt toxins) which are very specific to the target insect but are safe to other non-target organisms. Upon ingestion by insect, δ-endotoxin gets cleaved, binds to the gut epithelium, and forms cation channels causing cell lysis and death. After the discovery of Bacillus thuringiensis israelensis, these bacteria are extensively used as biocontrol agents for the management of mosquito vector populations due to their distinctive evolutionary characteristics like synergism, combinational working mechanism, and counter-resistance effects. The present chapter emphasizes on Bt, its origin, classification, details of its active mosquitocidal compound (composition, structure, and function), factors affecting larvicidal activity, development of resistance in mosquitoes, effects on non-target organisms and the environment in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah MAF, Alzate O, Mohammad M, McNall RJ, Adang MJ, Dean DH (2003) Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl Environ Microbiol 69:5343–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afrane YA, Mweresa NG, Wanjala CL, Gilbreath TM III, Zhou G, Lee MC, Yan G (2016) Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya. Malar J 15:577

    Article  PubMed  PubMed Central  Google Scholar 

  • Akiba Y (1991) Assessment of rainwater-mediated dispersion of field-sprayed Bacillus thuringiensis in soil. Jpn J Appl Entomol Z 26:477–483

    Article  Google Scholar 

  • Ali A (1981) Bacillus thuringiensis serovar israelensis (ABG-6108) against chironomids and some nontarget aquatic invertebrates. J Invertebr Pathol 38:264–272

    Article  Google Scholar 

  • Ali A, Sauerman DM, Nayar JK (1984) Pathogenicity of industrial formulations of Bacillus thuringiensis serovar. israelensis to larvae of some Culicine mosquitoes in the laboratory. Florida Entomol 67:193–197

    Google Scholar 

  • Aly C (1988) Filter feeding of mosquito larvae (Diptera: Culicidae) in the presence of the bacterial pathogen Bacillus thuringiensis var. israelensis. J Appl Entomol 105:160–166

    Article  Google Scholar 

  • Aly C, Mulla MS, Bo-Zhao X, Schnetter W (1988) Rate of ingestion by mosquito larvae (Diptera: Culicidae) as a factor in the effectiveness of a bacterial stomach toxin. Med Entomol 25:191–196

    Article  CAS  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Angsuthanasombat C, Crickmore N, Ellar DJ (1992) Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo. FEMS Microbiol Lett 94:63–68

    Article  CAS  Google Scholar 

  • Angsuthanasombat C, Uawithya P, Leetachewa S, Pornwiroon W, Ounjai P, Kerdcharoen T, Katzenmeier G, Panyim S (2004) Bacillus thuringiensis Cry4A and Cry4B mosquito-larvicidal proteins: Homology-based 3D model and implications for toxin activity. J Biochem Mol Biol 37:304–313

    CAS  PubMed  Google Scholar 

  • Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: Unique features of their mode of action. FEMS Microbiol Lett 195:1–8

    Article  CAS  PubMed  Google Scholar 

  • Baumann L, Okamoto K, Unterman BM, Lynch MJ, Bauman P (1984) Phenotypic characterization of Bacillus thuringiensis and Bacillus cereus. J Invertebr Pathol 44:329–341

    Article  Google Scholar 

  • Becker N, Margalit J (1993) Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: Theory and practice. John Wiley & Sons, New York, pp 147–170

    Google Scholar 

  • Becker N, Zgomba M, Ludwig M, Petric D, Rettich F (1992) Factors influencing the activity of Bacillus thuringiensis var. israelensis treatments. J Am Mosq Control Assoc 8:285–289

    CAS  PubMed  Google Scholar 

  • Beltrao HBM, Silva-Filha MHNL (2007) Interaction of Bacillus thuringiensis svar. israelensis cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. FEMS Microbiol Lett 266:163–169

    Article  CAS  Google Scholar 

  • Ben-Dov E (2014) Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins 6:1222–1243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Dov E, Boussiba S, Zaritsky A (1995) Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. J Bacteriol 177:2851–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benelli G (2015) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: A systematic review. Parasitol Res 114:3201–3212

    Article  PubMed  Google Scholar 

  • Benelli G, Jeffries CL, Walker T (2016) Biological control of mosquito vectors: past, present, and future. Insects 7:52

    Article  PubMed Central  Google Scholar 

  • Berry J, O’Neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, Holden MTG, Harris D, Zaritsky A, Parkhill J (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68:5082–5095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaustein L, Margalit J (1991) Indirect effects of the fairy shrimp, Branchipus schaefferi and two ostracod species on Bacillus thuringiensis var israelensis induced mortality in mosquito larvae. Hydrobiologia 212:67–73

    Article  Google Scholar 

  • Boisvert M, Boisvert J (1999) Persistence of toxic activity and recycling of Bacillus thuringiensis var. israelensis in cold water: Field experiments using diffusion chambers in a pond. Biocontrol Sci Technol 9:507–522

    Article  Google Scholar 

  • Boisvert M, Boisvert J (2000) Effects of Bacillus thuringiensis var. israelensis on target and nontarget organisms: A review of laboratory and field experiments. Biocontrol Sci Technol 10:517–561

    Article  Google Scholar 

  • Boisvert J, Lacoursière JO (2004) Le Bacillus thuringiensis et le contrôle des insectes piqueurs au Québec. ENV/2004/0278. Ministère de l’Environnement Québéquois, Québec, 101p

    Google Scholar 

  • Boonserm P, Ellar DJ, Li J (2003) Crystallization and preliminary X-ray diffraction studies of a mosquito larvicidal toxin from Bacillus thuringiensis subsp. israelensis. Acta Cryst D 59:591–594

    Article  CAS  Google Scholar 

  • Boonserm P, Davis P, Ellar DJ, Li J (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348:363–382

    Article  CAS  PubMed  Google Scholar 

  • Boonserm P, Mo M, Angsuthanasombat C, Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J Bacteriol 188:3391–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgouin C, Klier A, Rapoport G (1986) Characterization of the genes encoding the haemolytic toxin and mosquitocidal δ-endotoxin of Bacillus thuringiensis var. israelensis. Mol Gen Genet 205:390–397

    Article  CAS  PubMed  Google Scholar 

  • Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6:e1760

    Article  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2005) Comprehensive molecular insect science. In: Bacillus thuringiensis mechanisms and use. Elsevier BV, Amsterdam, pp 175–206

    Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Burges HD (1981) Safety, safety testing and quality control of microbial pesticides. Microbial control of pests and plant diseases. Academic Press Inc, London, pp 738–768

    Google Scholar 

  • Burke WF Jr, McDonald KO, Davidson EW (1983) Effect of UV light on spore viability and mosquito larvicidal activity of Bacillus sphaericus 1593. Appl Environ Microbiol 46:954–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: Data and hypotheses. Appl Environ Microbiol 69:2415–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butko P, Huang F, Pusztai-Carey M, Surewicz WK (1996) Membrane permeabilization induced by cytolytic δ-endotoxin CytA from Bacillus thuringiensis var. israelensis. Biochemistry 35:11355–11360

    Article  CAS  PubMed  Google Scholar 

  • Butko P, Huang F, Pusztai-Carey M, Surewicz WJ (1997) Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var. israelensis with lipid membranes. Biochem 36:12862–12868

    Article  CAS  Google Scholar 

  • Buzdin AA, Revina LP, Kostina LI, Zalunin IA, Chestukhina GG (2002) Interaction of 65- and 62-kD proteins from the apical membranes of the Aedes aegypti larvae midgut epithelium with Cry4B and Cry11A endotoxins of Bacillus thuringiensis. Biochemistry 67:540–546

    CAS  PubMed  Google Scholar 

  • Canton PE, Lopez-Diaz JA, Gill SS, Bravo A, Soberon M (2014) Membrane binding and oligomer membrane insertion are necessary but insufficient for Bacillus thuringiensis Cyt1Aa toxicity. Peptides 53:286–291

    Article  CAS  PubMed  Google Scholar 

  • Carlson CR, Kolsto AB (1993) A complete physical map of a Bacillus thuringiensis chromosome. J Bacteriol 175:1053–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Yu YM, Dai SM, Law SK, Gill SS (1993) High-level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl Environ Microbiol 59:815–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chayaratanasin P, Moonsom S, Sakdee S, Chaisri U, Katzenmeier G, Angsuthanasombat C (2007) High level of soluble expression in Escherichia coli and characterisation of the cloned Bacillus thuringiensis Cry4Ba domain III fragment. J Biochem Mol Biol 40:58–64

    CAS  PubMed  Google Scholar 

  • Chen SF, Xiao TC, Lu JF (1984) A study of the toxicity of Bacillus thuringiensis var. israelensis to mosquito larvae and factors affecting it. Nat Enemies Insects Kunchong Tiandi 6:115–117

    Google Scholar 

  • Chen J, Aimanova KG, Fernandez LE, Bravo A, Soberon M, Gill SS (2009a) Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Biochem J 424:191–200

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Aimanova KG, Pan S, Gill SS (2009b) Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin. Insect Biochem Mol Biol 39:688–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Likitvivatanavong S, Aimanova KG, Gill SS (2013) A 104 kDa Aedes aegypti aminopeptidase N is a putative receptor for the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Insect Biochem. Molec Biol 43:1201–1208

    CAS  Google Scholar 

  • Christiansen JA, McAbee RD, Stanich MA, DeChant P, Boronda D, Cornel J (2004) Influence of temperature and concentration of VectoBacH on control of the salt-marsh mosquito, Ochlerotatus squamiger, in Monterey County, California. J Am Mosq Control Assoc 20:165–170

    PubMed  Google Scholar 

  • Claus D, Berkeley RCW (1986) Genus bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharp ME, Holt JG (eds) Beghey's manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1105–1139

    Google Scholar 

  • Cohen S, Dym O, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A (2008) High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. israelensis. J Mol Biol 380:820–827

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A, Dym O (2011) Cyt1Aa toxin: Crystal structure reveals implications for its membrane-perforating function. J Mol Biol 413:804–814

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N (2005) Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol 13:347–350

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N, Bone EJ, Williams JA, Ellar DJ (1995) Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensissubsp. israelensis. FEMS Microbiol Lett 131:249–254

    CAS  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Baum J, Bravo A, Lereclus D, Narva K, Sampson K, Schnepf E, Sun M, Zeigler D (2017) Bacillus thuringiensis toxin nomenclature. [online] Available at: Accessed 20 Jan 2017

    Google Scholar 

  • Chowanadisai L (1998) Factors influencing the larvicidal activity of bacterial toxin. Indian J. Malariol. 35:117–122

    Google Scholar 

  • Dai SM, Gill SS (1993) In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. israelensis CryIVD protein by Culex quinquefasciatus larval midgut proteases. Insect Biochem Mol Biol 23:273–283

    Article  CAS  PubMed  Google Scholar 

  • Davidson EW (1981) A review of the pathology of bacilli infecting mosquitoes, including an ultrastructural study of larvae fed Bacillus sphaericus 1593 spores. Dev Ind Microbiol 22:69–81

    Google Scholar 

  • de Barjac H, Bonnefoi A (1962) Essai de classification biochimique et sérologique de 24 souches de Bacillus de type thuringiensis. Entomophaga 7:5–31

    Article  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    Article  PubMed  CAS  Google Scholar 

  • de Respinis S, Demarta A, Patocchi N, Luthy P, Peduzzi R (2006) Molecular identification of Bacillus thuringiensis var. israelensis to trace its fate after application as a biological insecticide in wetland ecosystems. Lett Appl Microbiol 43:495–501

    Article  PubMed  CAS  Google Scholar 

  • Delecluse A, Bourgouin C, Klier A, Rapoport G (1988) Specificity of action on mosquito larvae of Bacillus thuringiensis var. israelensis toxins encoded by two different genes. Mol Gen Genet 214:42–47

    Article  CAS  PubMed  Google Scholar 

  • Delecluse A, Poncet S, Klier A, Rapoport G (1993) Expression of cryIVA and cryIVB genes, independently or in combination, in a crystal-negative strain of Bacillus thuringiensis subs. israelensis. Appl Environ Microbiol 59:3922–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLucca AJ II, Simonson JG, Larson AD (1981) Bacillus thuringiensis distribution in soils of the United States. Can J Microbiol 27:865–870

    Article  PubMed  Google Scholar 

  • DeMelo-Santos MAV, Sanches EG, de Jesus FJ, Regis L (2001) Evaluation of a new tablet formulation based on Bacillus thuringiensis serovar israelensis for larvicidal control of Aedes aegypti. Mem Inst Oswaldo Cruz 96:859–860

    Article  CAS  Google Scholar 

  • Derbyshire DJ, Ellar DJ, Li J (2001) Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-d-galactosamine. Acta Crystallogr Sect D 57:1938–1944

    Article  CAS  Google Scholar 

  • Faust RM (1975) Toxins of Bacillus thuringiensis: Mode of action. In: Biological regulation of vectors - a conference report. U.S. Govt. Printing Office, Washington, D.C, pp 31–48

    Google Scholar 

  • Federici AB (1995) The future of microbial insecticides as vector control agents. J Am Mosq Control Assoc 11:260–269

    CAS  PubMed  Google Scholar 

  • Federici BA, Ibarra JE, Padua LE, Gallart NJ, Sivasubramanian N (1987) Parasporal body of mosquitocidal subspecies of Bacillus thuringiensis. In: Maramorosch K (ed) Biotechnology in invertebrate pathology and cell culture. Academic Press, San Diego, CA, pp 115–131

    Chapter  Google Scholar 

  • Federici BA, Park HW, Bideshi DK, Wirth MC, Johnson JJ (2003) Recombinant bacteria for mosquito control. J Exp Biol 206:3877–3885

    Article  CAS  PubMed  Google Scholar 

  • Federici BA, Park HW, Bideshi DK (2010) Overview of the basic biology of Bacillus thuringiensis with emphasis on genetic engineering of bacterial larvicides for mosquito control. Open Toxinol J 3:83–100

    Article  CAS  Google Scholar 

  • Feldmann F, Dullemans A, Waalwijk C (1995) Binding of the CryIVD toxin of Bacillus thuringiensis subsp. israelensis to larval dipteran midgut proteins. Appl Environ Microbiol 61:2601–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez LE, Perez C, Segovia L, Rodriguez MH, Gill SS, Bravo A, Soberon M (2005) Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop α-8 of domain II. FEBS Lett 579:3508–3514

    Article  CAS  PubMed  Google Scholar 

  • Fernandez LE, Aimanova KG, Gill SS, Bravo A, Soberón M (2006) A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem J 394:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Luna MT, Lanz-Mendoza H, Gill SS, Bravo A, Soberon M, Miranda-Rios J (2010) An α-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae). Environ Microbiol 12:746–757

    Article  CAS  PubMed  Google Scholar 

  • Frutos R, Rang C, Royer M (1999) Managing insect resistance to plants producing Bacillus thuringiensis toxins. Critical Rev Biotech 19:227–276

    Article  CAS  Google Scholar 

  • Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L (2001) Structure of the insecticidal bacterial δ-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr Sect D 57:1101–1109

    Article  CAS  Google Scholar 

  • Garcia R, Desrochers B, Tozer W (1981) Studies on Bacillus thuringiensis var. israelensis against mosquito larvae and other organisms. UNDP/World Bank/WHO, New York/Washington, D.C/Geneva. 16 pp. #790197

    Google Scholar 

  • Garguno F, Thorne L, Walfield AM, Pollock TJ (1988) Structural relatedness between mosquitocidal endotoxins of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 54:277–279

    Article  Google Scholar 

  • Georghiou GP, Wirth MC (1997) Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol 63:1095–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Singh GJ, Hornung JM (1987) Cell membrane interaction of Bacillus thuringiensis subsp. israelensis cytolytic toxins. Infect Immun 55:1300–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg LJ (1979) Mosquito larvae control using a bacterial larvicide. US Patent 4:112

    Google Scholar 

  • Goldberg LJ, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: Crystal structure and channel formation. J Mol Biol 254:447–464

    Article  CAS  PubMed  Google Scholar 

  • Guerchicoff A, Ugalde R, Rubinstein CP (1997) Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 63:2716–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo SY, Ye S, Liu YF, Wei L, Xue J, Wu HF, Song FP, Zhang J, Wu XA, Huang DF, Rao Z (2009) Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 168:259–266

    Article  CAS  PubMed  Google Scholar 

  • Habib MEM, Andrade CFS (1998) Bactérias entomopatogênicas. In: Alves SB (ed) Controle microbiano de insetos. FEALQ, Piracicaba, pp 383–446

    Google Scholar 

  • Hannay CL (1953) Crystalline inclusion in aerobic spore forming bacteria. Nature 172:1004

    Google Scholar 

  • Hannay CL, Fitz-James P (1955) The protein crystals of Bacillus thuringiensis Berliner. Can J Microbiol 1:694–710

    Article  CAS  PubMed  Google Scholar 

  • Hansen BM, Salamitou S (2000) Virulence of Bacillus thuringiensis. In: Charles JF, Delecluse A, Nielsen-Le Roux C (eds) Entomopathogenic bacteria: From laboratory to field application. Kluwer Academic, Dordrecht, pp 41–44

    Chapter  Google Scholar 

  • Hansen BM, Damgaard PH, Eilenberg J, Pedersen JC (1998) Molecular and phenotypic characterization of Bacillus thuringiensis isolated from leaves and insects. J Invertebr Pathol 71:106–114

    Article  CAS  PubMed  Google Scholar 

  • He LS, Ong KH (2000) Effects of Bacillus thuringiensis H-14 on bloodworms (Diptera: Chironomidae). Singap J Prim Ind 28:7–12

    Google Scholar 

  • Helgason E, Caugant DA, Lecadet M-M, Chen Y, Mahillon J, Lovgren A, Hegna I, Kvaloy K, Kolsto AB (1998) Genetic diversity of Bacillus cereus, B. thuringiensis isolates from natural sources. Curr Microbiol 37:80–87

    Article  CAS  PubMed  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Ann Rev Entomol 45:371–391

    Article  CAS  Google Scholar 

  • Hernandez-Soto A, Del Rincon-Castro MC, Espinoza AM, Ibarra JE (2009) Parasporal body formation via overexpression of the Cry10Aa toxin of Bacillus thuringiensis subsp. israelensis, and Cry10Aa-Cyt1Aa synergism. Appl Environ Microbiol 75:4661–4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilmy NM, Merdan AI (1985) Larvicidal activity of Bacillus thuringiensis serotype H-14 on certain Egyptian mosquito species. J Egypt Soc Parasitol l5:263–27l

    Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlader MTH, Kagawa Y, Sakai H, Hayakawa T (2009) Biological properties of loop-replaced mutants of Bacillus thuringiensis mosquitocidal Cry4Aa. J Biosci Bioeng 108:179–183

    Article  CAS  PubMed  Google Scholar 

  • Howlader MTH, Kagawa Y, Miyakawa A, Yamamoto A, Taniguchi T, Hayakawa T, Sakai H (2010) Alanine scanning analyses of the three major loops in domain II of Bacillus thuringiensis mosquitocidal toxin Cry4Aa. Appl Environ Microbiol 76:860–865

    Article  CAS  PubMed  Google Scholar 

  • Hui F, Scheib U, Hu Y, Sommer RJ, Aroian RV, Ghosh P (2012) Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry 51:9911–9921

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim AM, Griko N, Junker M, Lee A (2010) Bacillus thuringiensis a genomics and proteomics perspective. Bulla Bioeng Bugs 1:31–50

    Article  PubMed  Google Scholar 

  • Ishiwata S (1901) On a kind of severe flacherie (sotto disease). Dainihon Sanshi Kaiho 114:1–5

    Google Scholar 

  • Jacobs SE (1950) Bacteriological control of the flour moth Ephestia kuehniella. Proc Soc Apply Bacteriol 13:83–91

    Article  Google Scholar 

  • Jouzani GS, Seifinejad A, Saeedizadeh A (2008) Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Can J Microbiol 54:812–822

    Article  CAS  Google Scholar 

  • Juarez-Perez GA, Rubinstein C, Delécluse A (2002) Characterization of Cyt2Bc toxin from Bacillus thuringiensis subsp. medellin. Appl Environ Microbiol 68:1228–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khasdan V, Ben-Dov E, Manasherob R, Boussiba S, Zaritsky A (2001) Toxicity and synergism in transgenic Escherichia coli expressing four genes from Bacillus thuringiensis subsp. israelensis. Environ Microbiol 3:798–806

    Article  CAS  PubMed  Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv Insect Physiol 24:275–308

    Article  CAS  Google Scholar 

  • Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificities. Biochim Biophys Acta 924:509–518

    Article  CAS  Google Scholar 

  • Knowles BH, Blatt MR, Tester M, Horsnell JM, Carroll MG, Ellar J (1989) A cytolytic δ-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett 244:259–262

    Article  CAS  PubMed  Google Scholar 

  • Komano T, Yamigawa M, Nishimoto T, Yoshisue H, Tanabe K, Sen K, Sakai H (1998) Activation process of the insecticidal proteins CryIVA and CryIVB produced by Bacillus thuringiensis subsp. israelensis. Isr J Entomol 32:185–198

    Google Scholar 

  • Koni PA, Ellar DJ (1993) Cloning and characterization of novel Bacillus thuringiensis cytolytic delta-endotoxin. J Mol Biol 229:319–327

    Article  CAS  PubMed  Google Scholar 

  • Kramer VL (1990) Efficacy and persistence of Bacillus sphaericus, Bacillus thuringiensis var. israelensis, and methoprene against Culiseta incidens (Diptera: Culicidae) in tires. J Econ Entomol 83:1280–1285

    Article  CAS  PubMed  Google Scholar 

  • Kramer VL, Garcia R, Colwell AE (1988) An evaluation of Gambusia affinis and Bacillus thuringiensis var. biorational control of mosquitoes 155 israelensis as mosquito control agents in California wild rice. J Am Mosq Control Assoc 4:470–478

    CAS  PubMed  Google Scholar 

  • Krieg A, Huger AM, Langenbruch GA, Schnetter W (1983) Bacillus thuringiensis var. tenebrionis, a new pathotype effective against larvae of Coleoptera. Z Angew Entomol 96:500–508

    Article  Google Scholar 

  • Lacey LA, Oldacre SL (1983) The effect of temperature, larval age, and species of mosquito on the activity of an isolate of Bacillus thuringiensis var. darmstadiensis toxic for mosquito larvae. Mosq News 43:176–180

    Google Scholar 

  • Lacey LA, Undeen AH (1986) Microbial control of black flies and mosquitoes. Ann Rev Entomol 31:265–296

    Article  CAS  Google Scholar 

  • Lee HL, Cheong WH (1985) Laboratory evaluation of the potential efficacy of Bacillus thuringiensis israelensis for the control of mosquitoes in Malaysia. Trop Biomed 2:133–137

    Google Scholar 

  • Lee SG, Eckblad W, Bulla A Jr (1985) Diversity of protein inclusion bodies and identification of mosquitocidal protein in Bacillus thuringiensis subsp. israelensis. Biochem Biophys Res Commun 126:953–960

    Article  CAS  PubMed  Google Scholar 

  • Leong KL, Cano RJ, Kubinski AM (1980) Factors affecting Bacillus thuringiensis total field persistence. Environ Entomol 9:593–599

    Article  Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353:815–821

    Google Scholar 

  • Li J, Koni PA, Ellar DJ (1996) Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol 257:129–152

    Article  CAS  PubMed  Google Scholar 

  • Li J, Derbyshire DJ, Promdonkoy B, Ellar DJ (2001) Structural implications for the transformation of the Bacillus thuringiensis δ-endotoxins from water-soluble to membrane-inserted forms. Biochem Soc Trans 29:571–577

    Article  CAS  PubMed  Google Scholar 

  • Likitvivatanavong S, Katzenmeier G, Angsuthanasombat C (2006) Asn183 in α5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin. Arch Biochem Biophys 445:46–55

    Article  CAS  PubMed  Google Scholar 

  • Lord JC, Undeen AH (1990) Inhibition of the Bacillus thuringiensis var. israelensis toxin by dissolved tannins. Environ Entomol 19:1547–1551

    Article  CAS  Google Scholar 

  • Manasherob R, Itsko M, Sela-Baranes N, Ben-Dov E, Berry C, Cohen S, Zaritsky A (2006) Cyt1Ca from Bacillus thuringiensis subsp. israelensis: Production in Escherichia coli and comparison of its biological activities with those of other Cyt-like proteins. Microbiology 152:2651–2659

    Article  CAS  PubMed  Google Scholar 

  • Manceva SD, Pusztai-Carey M, Russo PS, Butko P (2005) A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Biochemistry 44:589–597

    Article  CAS  PubMed  Google Scholar 

  • Margalith Y, Ben-Dov E (2000) Biological control by Bacillus thuringiensis subsp. israelensis. In: Rechcigl JE, Rechcigl NA (eds) Insect Pest Management: Techniques for Environmental Protection. CRC Press, Boca Raton, pp 243–301

    Google Scholar 

  • Martin WF, Reichelderfer CF (1989) Bacillus thuringiensis: Persistence and movement in field crops; 20–24 august, 1989. University of Maryland, College Park

    Google Scholar 

  • Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    Google Scholar 

  • McGuirre MR, Shasha BS, Eastman CE, Sagedchi HO (1996) Starch and fluor-based sprayable formulations: Effect on rainfastness and solar stability of Bacillus thuringiensis. J Econ Entomol 89:863–869

    Article  Google Scholar 

  • Merritt RW, Walker ED, Wilzbach MA, Cummins KW, Morgan WT (1989) A broad evaluation of B.t.i. for blackfly (Diptera: Simuliidae) control in a Michigan river: Efficacy, carry and nontarget effects on invertebrates and fish. J Am Mosq Control Assoc 5:397–415

    CAS  PubMed  Google Scholar 

  • Morris ON (1983) Protection of Bacillus thuringiensis from inactivation from sunlight. Can Entomol 115:1215–1227

    Article  Google Scholar 

  • Morse RJ, Yamamoto T, Stroud RM (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure (Cambridge) 9:409–417

    Article  CAS  Google Scholar 

  • Mulla MS, Federici BA, Darwazeh HA (1982) Larvicidal efficacy of Bacillus thuringiensis serotype H-14 against stagnant-water mosquitoes and its effects on non-target organisms. Environ Entomol 11:788–795

    Article  Google Scholar 

  • Mulla MS, Darwazeh HA, Zgomba M (1990) Effect of some environmental factors on the efficacy of Bacillus sphaericus 2362 and Bacillus thuringiensis (H-14) against mosquitoes. Bull Soc Vect Ecol 15:166–175

    Google Scholar 

  • Mulla MS, Thavara U, Tawatsin A, Chompoosri J (2004) Procedures for the evaluation of field efficacy of slow-release formulations of larvicides against Aedes aegypti in water-storage containers. J Am Mosq Control Assoc 20:64–73

    CAS  PubMed  Google Scholar 

  • Mulligan FS, Schaefer CH, Wilder WH (1980) Efficacy and persistence of Bacillus sphaericus and B. thuringiensis H. 14 against mosquitoes under laboratory and field conditions. J Econ Entomol 3:684–688

    Article  Google Scholar 

  • Muthukumar G, Nickerson K (1987) The glycoprotein toxin of Bacillus thuringiensis subsp. israelensis indicates a Lectinlike receptor in the larval mosquito gut. Appl Environ Microbiol 53:2650–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narva KE, Payne JM, Schwab GE, Hickle LA, Galasan T, Sick AJ (1991) Novel Bacillus thuringiensis microbes active against nematodes, and genes encoding novel nematode active toxins cloned from Bacillus thuringiensis isolates: European patent application EP0462 721A2. European Patent Office, Munich

    Google Scholar 

  • Nayar JK, Knight JW, Ali A, Carlson DB, O’Bryan PD (1999) Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar. israelensis against two Florida mosquito species. J Am Mosq Control Assoc 15:32–42

    CAS  PubMed  Google Scholar 

  • Nguyen TT, Su T, Mulla MS (1999) Mosquito control and bacterial flora in water enriched with organic matter and treated with Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus formulations. J Vector Ecol 24:138–153

    CAS  PubMed  Google Scholar 

  • Nisnevitch M, Cohen S, Ben-Dov E, Zaritsky A, Sofer Y, Cahan R (2006) Cyt2Ba of Bacillus thuringiensis israelensis: Activation by putative endogenous protease Biochem. Biophys Res Commun 344:99–105

    Article  CAS  Google Scholar 

  • Ohana B, Margalit J, Barak Z (1987) Fate of Bacillus thuringiensis subsp israelensis under simulated field conditions. Appl Environ Microbiol 53:828–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppert B, Kramer KJ, Beeman RW, Johnson D, Mc Gaughey WH (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem 272:23473–23476

    Article  CAS  PubMed  Google Scholar 

  • Otieno-Ayayo ZN, Zaritsky A, Wirth MC, Manasherob R, Khasdan V, Cahan R, Ben-Dov E (2008) Variations in the mosquito larvicidal activities of toxins from Bacillus thuringiensis ssp. israelensis. Environ Microbial 10:2191–2199

    Article  CAS  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poncet S, Delecluse A, Klier A, Rapoport G (1995) Evaluation of synergistic interactions among the CryIVA, CryIVB, and CryIVD toxic components of B. thuringiensis subsp. Israelensis crystals. J Invertebr Pathol 66:131–135

    Article  CAS  Google Scholar 

  • Porcar M, Juárez-Pérez V (2003) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26:419–432

    Article  CAS  PubMed  Google Scholar 

  • Pozsgay M, Fast P, Kaplan H, Carey PR (1987) The effect of sunlight on the protein crystals from Bacillus thuringiensis var. kurstaki HDl and NRDl2: A Raman spectroscopy study. J Znvertebr Pathol 50:246–253

    Article  CAS  Google Scholar 

  • Promdonkoy B, Ellar DJ (2000) Membrane pore architecture of a cytolytic toxin from Bacillus thuringiensis. Biochem J 350:275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Promdonkoy B, Ellar DJ (2003) Investigation of the poreforming mechanism of a cytolytic δ-endotoxin from Bacillus thuringiensis. Biochem J 374:255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell M, Ellar DJ (1997) The identification and characterization of novel proteinaceous components of the Bacillus thuringiensis subsp. israelensis parasporal inclusion. In: Proceedings of the 30th annual meeting of the Society for Invertebrate Pathology, Banff, Canada. 24–29 p 53

    Google Scholar 

  • Ramírez-Lepe M, Ramírez-Suero M (2012) In: Perveen F (ed) Biological control of mosquito larvae by Bacillus thuringiensis subsp. israelensis, insecticides - Pest engineering. InTech, London, ISBN: 978-953-307-895-3, Available from: http://www.intechopen.com/books/insectic

    Google Scholar 

  • Ramırez-Suero M, Valerio-Alfaro G, Bernal JS, Ramirez-Lepe M (2011) Synergistic effect of chitinases and Bacillus thuringiensis israelensis spore-toxin complex against Aedes aegypti larvae. Can Entomol 143:157–164

    Article  Google Scholar 

  • Ravoahangimalala O, Charles JF (1995) In vitro binding of Bacillus thuringiensis var. israelensis individual toxins to midgut cells of Anopheles gambiae (Diptera: Culicidae). FEBS Lett 362:111–115

    Article  CAS  PubMed  Google Scholar 

  • Rettich F (1983) Effects of Bacillus thuringiensis serotype H-14 on mosquito larvae in the Elbe low land. Acta Entomol Bohemoslov 80:21–28

    Google Scholar 

  • Revina LP, Kostina LI, Ganushkina LA, Mikhailova AL, Zalunin IA, Chestukhina GG (2004) Reconstruction of Bacillus thuringiensis ssp. israelensis Cry11A endotoxin from fragments corresponding to its N- and C moieties restores its original biological activity. Biochemistry 69:181–187

    CAS  PubMed  Google Scholar 

  • Rodriguez-Almazan C, Ruiz de Escudero I, Canton PE, Munoz-Garay C, Perez C, Gill SS, Soberón M, Bravo A (2010) The amino- and carboxyl-terminal fragments of the Bacillus thuringiensis Cyt1Aa toxin have differential roles in toxin oligomerization and pore formation. Biochemistry 50:388–396

    Article  PubMed  CAS  Google Scholar 

  • Rowe GE, Margaritis AM (1987) Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. CRC Crit Rev Biotechnol 6:87–127

    Article  CAS  Google Scholar 

  • Rushed SS, Mulla MS (1989) Factors influencing ingestion of particulate materials by mosquito larvae (Diptera: Culicidae). J Med Entomol 26:210–216

    Article  Google Scholar 

  • Saengwiman S, Aroonkesorn A, Dedvisitsakul P, Sakdee S, Leetachewa S, Angsuthanasombat C, Pootanakit K (2011) In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae. Biochem Biophys Res Commun 407:708–713

    Article  CAS  PubMed  Google Scholar 

  • Saleh MS (1985a) Larvicidal activity of Bacillus thuringiensis H-14 against mosquito larvae. Insect Sci Appl 6:617–620

    Google Scholar 

  • Saleh MS (1985b) Effects of six insect growth regulators on mosquito larvae of Aedes aegypti. Insect Sci Appl 6:609–611

    CAS  Google Scholar 

  • Sandoski CA, Yates MW, Olson JK, Meisch MV (1985) Evaluation of Beecomist applied Bacillus thuringiensis (H-14) against Anopheles quadrimaculatus larvae. J Am Mosq Control Assoc 1:316–319

    CAS  PubMed  Google Scholar 

  • Schnepf EN, Crickmore J, Van Rie D, Lereclus J, Baum J, Feitelson DR, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semmler M, Abdel-Ghaffar F, Al-Rasheid K, Mehlhorn H (2009) Nature helps: From research to products against blood-sucking arthropods. Parasitol Res 105:1483–1487

    Article  PubMed  Google Scholar 

  • Slepecky RA, Hemphill HE (1992) The genus bacillus-nonmedical. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 2. Springer Verlag, New York, pp 1663–1696

    Google Scholar 

  • Sokolova EI, Kulieva NM, Chekalina LI, Shatalova LA (1987) Larvicidal activity of the preparation Bacillus thuringiensis H-14 strain BTS-393 after prolonged storage. Med Parazitol Parazitarn Bole 1:17–19

    Google Scholar 

  • Steinhaus EA (1956) Potentialities for microbial control of insects. Agric Food Chem 4:676–680

    Article  Google Scholar 

  • Sun C, Georghiou GP, Weiss K (1980) Toxicity of Bacillus thuringiensis var israelensis to mosquito larvac variously resistant to conventional insecticides. Mosq News 10:614–661

    Google Scholar 

  • Taveecharoenkool T, Angsuthanasombat C, Kantchanawarin C (2010) Combined molecular dynamics and continuum solvent studies of the pre-pore Cry4Aa trimer suggest its stability in solution and how it may form a pore. PMC Biophys 3:1–16

    Article  CAS  Google Scholar 

  • Thammasittirong A, Dechklar M, Leetachewa S, Pootanakit K, Angsuthanasombat C (2011) Aedes aegypti membrane-bound alkaline phosphatase expressed in Escherichia coli retains high-affinity binding for Bacillus thuringiensis Cry4Ba toxin. Appl Environ Microbiol 77:6836–6840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery I, Hamon S (1998) Bacterial control of mosquito larvae: Investigation of stability of Bacillus thuringiensis var. israelensis and Bacillus sphaericus standard powders. J Am Mosq Control Assoc 14:472–476

    CAS  PubMed  Google Scholar 

  • Thiery I, Delecluse A, Tamayo MC, Orduz S (1997) Identification of a gene for Cyt1A-like hemolysin from Bacillus thuringiensis subsp. medellin and expression in a crystal-negative B. thuringiensis strain. Appl Environ Microbiol 63:468–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas WE, Ellar DJ (1983) Mechanism of action of Bacillus thuringiensis var. israelensis insecticidal delta-endotoxin. FEBS Lett 154:362–368

    Article  CAS  PubMed  Google Scholar 

  • Tian B, Yang J, Zhang K (2007) Bacteria used in the biological control of plant-parasitic nematodes: Populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213

    Article  CAS  PubMed  Google Scholar 

  • Tyrell D, Davidson LI, Bulla LA Jr, Ramoska WA (1979) Toxicity of parasporal crystals of Bacillus thuringiensis subsp. israelensis to mosquitoes. Appl Environ Microbiol 38:656–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usta C (2013) Microorganisms in biological pest control — a review (Bacterial toxin application and effect of environmental factors)

    Google Scholar 

  • Vilarinhos PTR, Monnerat R (2004) Larvicidal persistence of formulations of Bacillus thuringiensis var. israelensis to control larval Aedes aegypti. J Am Mosq Control Assoc 20:311–314

    PubMed  Google Scholar 

  • Walker ED (1995) Effect of low temperature on feeding rate of Aedes stimulans larvae and efficacy of Bacillus thuringiensis var. israelensis (H-14). J Am Mosq Control Assoc 11:107–110

    CAS  PubMed  Google Scholar 

  • Wei J-Z, Hale K, Carta L, Platzer E, Wong C, Fang SC, Arioan RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100:2760–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (1999) Microbial pest control agent Bacillus thuringiensis. World Health Organization, Geneva

    Google Scholar 

  • WHO (2017) Lymphatic Filariasis. Available online: http://www.who.int/mediacentre/factsheets/fs102/en/

  • WHO (2019) Vector-borne diseases key facts. https://www.who.int/en/news-room/fact-sheets/detail/vector-borne-diseases

  • Wirth MC (2010) Mosquito resistance to bacterial larvicidal toxins. Open Toxinol J 3:126–140

    Article  CAS  Google Scholar 

  • Wirth MC, Georghiou GP, Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc Natl Acad Sci U S A 94:10536–10540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth MC, Park HW, Walton WE, Federici BA (2005) Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl Environ Microbial 71:185–189

    Article  CAS  Google Scholar 

  • Wraight SP, Molloy DP, Singer S (1987) Studies on the culicine mosquito host range of Bacillus sphaericus and Bacillus thuringiensis var. israelensis with notes on the effects of temperature and instar on bacterial efficacy. J Invertebr Pathol 49:291–302

    Article  CAS  PubMed  Google Scholar 

  • Xu RM, Chang JS, Lu BL (1986) Susceptibility of eight Chinese mosquitoes to Bacillus thuringiensis H-14. Chin J Biol Control 2:20–22

    Google Scholar 

  • Yamagiwa M, Esaki M, Otake K, Inagaki M, Komano T, Amachi T, Sakai H (1999) Activation process of dipteran-specific insecticidal protein produced by Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 65:3464–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagiwa M, Ogawa R, Yasuda K, Natsuyama H, Sen K, Sakai H (2002) Active form of dipteran-specific insecticidal protein Cry11A produced by Bacillus thuringiensis subsp. israelensis. Biosci Biotechnol Biochem 66:516–522

    Article  CAS  PubMed  Google Scholar 

  • Yamagiwa M, Sakagawa K, Sakai H (2004) Functional analysis of two processed fragments of Bacillus thuringiensis Cry11A toxin. Biosci Biotechnol Biochem 68:523–528

    Article  CAS  PubMed  Google Scholar 

  • Yates MM (1984) A portable system for aerial applications of very low volumes of technical grade concentrates of Bacillus thuringiensis var. israelensis. Mosq News 44:583–587

    Google Scholar 

  • Yamagiwa M, Kamauchi S, Okegawa T, Esaki M, Otake K, Amachi T, Komano T, Sakai H. (2001) Binding properties of Bacillus thuringiensis Cry4A toxin to the apical microvilli of larval midgut of Culex pipiens. Biosci Biotechnol Biochem 65:2419–2427

    Google Scholar 

  • Zakharyan RA, Agabalyan AS, Chil-Akopyan LA, Gasparyan NS, Bakunts KA, Tatevosyan PE, Afrikyan EK (1976) About the possibility of extrachromosomal DNA in creation of the entomocidal endotoxin of B. thuringiensis. Dokl Akad Nauk Arrn SSR 63:42–47. [in Russian]

    CAS  Google Scholar 

  • Zhang YW, Zhang J, Lan JP, Wang JM, Liu JX, Yang MS (2016) Temporal and spatial changes in Bt toxin expression in Bt-transgenic poplar and insect resistance in field tests. J Forest Res 27:1249–1256

    Article  CAS  Google Scholar 

  • Zhou G, Wiseman V, Atieli HE, Lee MC, Githeko AK, Yan G (2016) The impact of long-lasting microbial larvicides in reducing malaria transmission and clinical malaria incidence: Study protocol for a cluster randomized controlled trial. Trials 17:423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Achari, T.S., Barik, T.K., Acharya, U.R. (2020). Toxins of Bacillus thuringiensis: A Novel Microbial Insecticide for Mosquito Vector Control. In: Barik, T.K. (eds) Molecular Identification of Mosquito Vectors and Their Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-9456-4_5

Download citation

Publish with us

Policies and ethics