Skip to main content

MET-Type Bioelectrocatalysis

  • Chapter
  • First Online:
Enzymatic Bioelectrocatalysis

Abstract

This chapter deals with theoretical features of MET-type bioelectrocatalysis with emphasis of steady-state serial reactions. The fundamental concept in the selection of mediators is described based on linear free energy relationship and diffusion-controlled kinetics. Basic features of redox potential tuning and immobilization of mediators including redox polymers are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delahay P (1980) New instrumental methods in electrochemistry. Chap. 5. Robert E. Krieger Publishing Company, New York

    Google Scholar 

  2. Kitazumi Y, Kano K (2015) Electrode reactions using redox enzymes and microbes. Electrochemistry 83:1079–1084 ([In Japanese])

    Article  CAS  Google Scholar 

  3. Matsumoto R, Kano K, Ikeda T (2002) Theory of steady-state catalytic current of mediated bioelectrocatalysis. J Electroanal Chem 535:37–40

    Article  CAS  Google Scholar 

  4. Kano K, Yamamoto M (2016) Joyful physical chemistry, vol 1. Kodansha, Tokyo, pp 1–259. [In Japanese]

    Google Scholar 

  5. Ogino Y, Takagi K, Kano K, Ikeda T (1995) Reactions between diaphorase and quinone compounds in bioelectrocatalytic redox reactions of NADH and NAD+. J Electroanal Chem 396:517–524

    Article  Google Scholar 

  6. Takagi K, Kano K, Ikeda T (1998) Mediated Bioelectrocatalysis Based on NAD-related Enzymes with Reversible Characteristics. J. Electroanal. Chem. 445:211–219

    Article  CAS  Google Scholar 

  7. Tsujimura S, Kawaharada M, Nakagawa T, Kano K, Ikeda T (2003) Mediated bioelectrocatalytic O2 reduction to water at highly positive electrode potentials near neutral pH. Electrochem Commun 5:138–141

    Article  CAS  Google Scholar 

  8. Sosna M, Chrétien J-M, Kilburn JD, Bartlett PN (2010) Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation. Phys Chem Chem Phys 12:10018–100026

    Article  CAS  PubMed  Google Scholar 

  9. Gallaway JW, Barton SAC (2008) Kinetics of redox polymer-mediated enzyme electrodes. J Am Chem Soc 130:8527–8536

    Article  CAS  PubMed  Google Scholar 

  10. Okumura N, Abo T, Tsujimura S, Kano K (2006) Electron transfer kinetics between PQQ-dependent soluble glucose dehydrogenase and mediators. Electrochemistry 74:639–641

    Article  CAS  Google Scholar 

  11. Kawai S, Yakushi T, Matsushita K, Kitazumi Y, Shirai O, Kano K (2014) The electron transfer pathway in direct electrochemical communication of fructose dehydrogenase with electrodes. Electrochem Commun 38:28–31

    Article  CAS  Google Scholar 

  12. Sakai K, Hsieh B-C, Maruyama A, Kitazumi Y, Shirai O, Kano K (2015) Interconversion between formate and hydrogen carbonate by tungsten-containing formate dehydrogenase-catalyzed mediated bioelectrocatalysis. Sens Biosens Res 5:90–96

    Google Scholar 

  13. Albery WJ, Cass AEG, Shu ZX (1990) Inhibited enzyme electrodes. 1. Theoretical-model. Biosens Bioelectron 5:367–378

    Google Scholar 

  14. Bartlett PN, Birkin PR, Wallace ENK (1997) Oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes. J Chem Soc Faraday Trans 93:1951–1960

    Google Scholar 

  15. Ishii A, Tsujimura S, Kano K (2007) Membrane thickness dependence of steady-state catalytic currents at enzyme/mediator layer-immobilized electrodes. Bunseki Kagaku 56:419–424 ([In Japanese])

    Article  CAS  Google Scholar 

  16. Ikeda T, Miki K, Senda M (1988) Theory of catalytic current at the biocatalyst electrode with entrapped mediator. Anal Sci 4:133–138

    Article  CAS  Google Scholar 

  17. Bartlett PN, Pratt KFE (1995) Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes. 1. Redox mediator entrapped within the film. J Electroanal Chem 397:61–78

    Google Scholar 

  18. Saravanakumar K, Ganesan S, Rajendran L (2015) Theoretical analysis of reaction and diffusion processes in a biofuel cell electrode. Fuel Cells 15:523–536

    Article  CAS  Google Scholar 

  19. Saravanakumar K, Rajendran L, Sangaranarayanan MV (2015) Current-potential response and concentration profiles of redox polymer-mediated enzyme catalysis in biofuel cells—estimation of Michaelis-Menten constants. Chem Phys Lett 621:117–123

    Article  CAS  Google Scholar 

  20. Barton SC (2005) Oxygen transport in composite mediated biocathodes. Electrochim Acta 50:2145–2153

    Article  CAS  Google Scholar 

  21. Tamaki T, Ito T, Yamaguchi T (2009) Modelling of reaction and diffusion processes in a high-surface-area biofuel cell electrode made of redox polymer-grafted carbon. Fuel Cells 9:37–43

    Article  CAS  Google Scholar 

  22. Osman MH, Shah AA, Wills RGA (2013) Detailed mathematical model of an enzymatic fuel cell. J Electrochem Soc 160:F806–F814

    Article  CAS  Google Scholar 

  23. Sakai H, Nakagawa T, Tokita Y, Hatazawa T, Ikeda T, Tsujimura S, Kano K (2009) A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ Sci 2:133–138

    Article  CAS  Google Scholar 

  24. Fultz ML, Durst RA (1982) Mediator compounds for the electrochemical study of biological redox systems: a compilation. Anal Chim Acta 140:1–18

    Article  CAS  Google Scholar 

  25. Chaubey A, Malhotra B (2002) Mediated biosensors. Biosens Bioelectron 17:441–456

    Article  CAS  PubMed  Google Scholar 

  26. Lever ABP (1990) Electrochemical parametrization of metal complex redox potentials, using the ruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series. Inorg Chem 29:1271–1285

    Article  CAS  Google Scholar 

  27. Tsujimura S, Kano K, Ikeda T (2002) Electrochemical oxidation of NADH catalyzed by diaphorase conjugated with poly-1-vinylimidazle complexed with Os(2,2’-dipyridylamine)2Cl. Chem Lett 31:1022–1023

    Article  Google Scholar 

  28. Durliat H, Barrau MB, Comtat M (1988) FAD used as a mediator in the electron transfer between platinum and several biomolecules. J Electroanal Chem 253:413–423

    Article  Google Scholar 

  29. Laughran MG, Hall JM, Turner APF (1996) Development of a pyrroloquinoline quinone (PQQ) mediated glucose oxidase enzyme electrode for detection of glucose in fruit juice. Electroanalysis 870–875

    Google Scholar 

  30. Pereira AR, Sedenho GC, Souza JCPD, Crespilho FN (2018) Advances in enzyme bioelectrochemistry. An Acad Bras Ciênc 90:825–857

    Article  CAS  PubMed  Google Scholar 

  31. Takagi K, Yamamoto K, Kano K, Ikeda T (2001) New pathway of amine oxidation respiratory chain of Paracoccus denitrificans IFO12442. Eur J Biochem 268:470–476

    Article  CAS  PubMed  Google Scholar 

  32. Yamamoto K, Takagi K, Kano K, Ikeda T (2001) Bioelectrocatalytic detection of histamine using quinohemoprotein amine dehydrogenase and the native electron acceptor cytochrome c-550. Electroanalysis 13:375–379

    Article  CAS  Google Scholar 

  33. Silveira CM, Almeida MG (2013) Small electron-transfer proteins as mediators in enzymatic electrochemical biosensors. Anal Bioanal Chem 405:3619–3635

    Article  CAS  PubMed  Google Scholar 

  34. Algov I, Grushka J, Zarivach R, Alfonta L (2017) Highly efficient flavin-adenine dinucleotide glucose dehydrogenase fused to a minimal cytochrome C domain. J Am Chem Soc 139:17217–17220

    Article  CAS  PubMed  Google Scholar 

  35. Rengaraj S, Haddad R, Lojou E, Duraffourg N, Holzinger M, Le Goff A, Forge V (2017) Interprotein electron transfer between FeS-protein nanowires and oxygen-tolerant NiFe hydrogenase. Angew Chem Int Ed 56:7774–7778

    Article  CAS  Google Scholar 

  36. Altamura L, Horvath C, Rengaraj S, Rongier A, Elouarzaki K, Gondran C, Maçon ALB, Vendrely C, Bouchiat V, Fontecave M, Mariolle D, Rannou P, Goff AL, Duraffourg N, Holzinger M, Forge V (2017) A synthetic redox biofilm made from metalloprotein-prion domain chimera nanowires. Nat Chem 9:157–163

    Article  CAS  PubMed  Google Scholar 

  37. Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600

    Article  CAS  Google Scholar 

  38. Ruan C, Yang F, Lei C, Deng J (1998) Thionine covalently tethered to multilayer horseradish peroxidase in a self-assembled monolayer as an electron-transfer mediator. Anal Chem 70:1721–1725

    Article  CAS  PubMed  Google Scholar 

  39. Xu JJ, Zhou DM, Chen HY (1998) A reagentless hydrogen peroxide biosensor based on the coimmobilization of thionine and horseradish peroxidase by their cross-linking with glutaraldehyde on glassy carbon electrode. Electroanalysis 10:713–716

    Article  CAS  Google Scholar 

  40. Fischer MJE (2010) Amine coupling through EDC/NHS: a practical approach. In: Mol NJd, MJE Fischer (eds) Surface plasmon resonance. Chap. 3. Humana Press, New Jersey, pp 55–73

    Google Scholar 

  41. Nagata R, Yokoyama K, Clark SA, Karube I (1995) A glucose sensor fabricated by the screen printing technique. Biosens Bioelectron 10:261–267

    Article  CAS  PubMed  Google Scholar 

  42. Shim J, Kim G-Y, Moon S-H (2011) Covalent co-immobilization of glucose oxidase and ferrocenedicarboxylic acid for an enzymatic biofuel cell. J Electroanal Chem 653:14–20

    Article  CAS  Google Scholar 

  43. Vasylieva N, Barnych B, Meiller A, Maucler C, Pollegioni L, Lin JS, Barbier D, Marinesco S (2011) Covalent enzyme imobilization by poly (Ethylene Glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens Bioelectron 26:3993–4000

    Article  CAS  PubMed  Google Scholar 

  44. Merchant SA, Tran TO, Meredith MT, Cline TC, Glatzhofer DT, Schmidtke DW (2009) High-sensitivity Amperometric Biosensors Based On Ferrocene-Modified Linear Poly(ethylenimine). Langmuir 25:7736–7742

    Article  CAS  PubMed  Google Scholar 

  45. Vreeke M, Maidan R, Heller A (1993) Glucose electrodes based on cross-linked bis(2,2’-bipyridine)chloroosmium(+/2+) complexed poly(1-vinylimidazole) films. Anal Chem 65:3512–3517

    Article  Google Scholar 

  46. Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 23:128–134

    Article  CAS  Google Scholar 

  47. Vreeke M, Maidan R, Heller A (1992) Hydrogen peroxide and β-nicotinamide adenine dinucleotide sensing amperometric electrodes based on electrical connection of horseradish peroxidase redox centers to electrodes through a three-dimensional electron relaying polymer network. Anal Chem 64:3084–3090

    Article  CAS  Google Scholar 

  48. Ye MHL, Olsthoorn AJJ, Schuhmann W, Schmidt HL, Duine JA, Heller A (1993) High current density “Wired” quinoprotein glucose dehydrogenase electrode. Anal Chem 65:238–241

    Article  CAS  Google Scholar 

  49. Tsujimura S, Murata K, Akatsuka W (2014) exceptionally high glucose current on a hierarchically structured porous carbon electrode with “Wired” flavin adenine dinucleotide-dependent glucose dehydrogenase. J Am Chem Soc 136:14432–14437

    Article  CAS  PubMed  Google Scholar 

  50. Mano N, Poulpiquet AD (2018) O2 reduction in enzymatic biofuel cells. Chem Rev 118:2392–2468

    Google Scholar 

  51. Zafar MN, Tasca F, Boland S, Kujawa M, Patel I, Peterbauer CK, Leech D, Gorton L (2010) Wiring of pyranose dehydrogenase with osmium polymers of different redox potentials. Bioelectrochemistry 80:38–42

    Article  CAS  PubMed  Google Scholar 

  52. Kenausis G, Chen Q, Heller A (1997) Electrochemical glucose and lactate sensors based on “Wired” thermostable soybean peroxidase operating continuously and stably at 37 °C. Anal Chem 69:1054–1060

    Article  CAS  PubMed  Google Scholar 

  53. Antiochia R, Gorton L (2014) A new osmium-polymer modified screen-printed graphene electrode for fructose detection. Sens Actuat B Chem 195:287–293

    Article  CAS  Google Scholar 

  54. Campbell AS, Murata H, Carmali S, Matyjaszewski K, Islam MF, Russell AJ (2016) Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell. Biosens Bioelectron 86:446–453

    Article  CAS  PubMed  Google Scholar 

  55. Knoche KL, Hickey DP, Milton RD, Curchoe CL, Minteer SD (2016) Hybrid glucose/O2 biobattery and supercapacitor utilizing a pseudocapacitive dimethylferrocene redox polymer at the bioanode. ACS Energy Lett. 1:380–385

    Article  CAS  Google Scholar 

  56. Koide S, Yokoyama K (1999) Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer. J Electroanal Chem 468:193–201

    Article  CAS  Google Scholar 

  57. Nieh CH, Kitazumi Y, Shirai O, Kano K (2013) Sensitive d-amino acid biosensor based on oxidase/peroxidase system mediated by pentacyanoferrate-bound polymer. Biosens Bioelectron 47:350–355

    Article  CAS  PubMed  Google Scholar 

  58. Tapia C, Milton RD, Pankratova G, Minteer SD, Åkerlund H-E, Leech D, De Lacey AL, Pita M, Gorton L (2017) Wiring of photosystem I and hydrogenase on an electrode for photoelectrochemical H2 production by using redox polymers for relatively positive onset potential. ChemElectroChem 4:90–95

    Article  CAS  Google Scholar 

  59. Eng LH, Elmgren M, Komlos P, Nordling M, Lindquist SE, Neujahr HY (1994) Viologen-based redox polymer for contacting the low-potential redox enzyme hydrogenase at an electrode surface. J Phys Chem 98:7068–7072

    Article  CAS  Google Scholar 

  60. Oughli AA, Conzuelo F, Winkler M, Happe T, Lubitz W, Schuhmann W, Rüdiger O, Plumeré N (2015) A redox hydrogel protects the O2-sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage. Angew Chem Int Ed 54:12329–12333

    Google Scholar 

  61. Plumeré N, Rüdiger O, Oughli AA, Williams R, Vivekananthan J, Pöller S, Schuhmann W, Lubitz W (2014) A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat Chem 6:822–827

    Article  PubMed  Google Scholar 

  62. Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K (2017) High-power formate/dioxygen biofuel cell based on mediated electron transfer type bioelectrocatalysis. ACS Catal 7:5668–5673

    Article  CAS  Google Scholar 

  63. Pinyou P, Ruff A, Pöller S, Alsaoub S, Leimkühler S, Wollenberger U, Schuhmann W (2016) Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers. Bioelectrochemistry 109:24–30

    Article  CAS  PubMed  Google Scholar 

  64. Abdellaoui S, Milton RD, Quah T, Minteer SD (2016) NAD-dependent dehydrogenase bioelectrocatalysis: the ability of a naphthoquinone redox polymer to regenerate NAD. Chem Commun 52:1147–1150

    Article  CAS  Google Scholar 

  65. Sato F, Togo M, Islam MK, Matsue T, Kosuge J, Fukasaku N, Kurosawa S, Nishizawa M (2005) Enzyme-based glucose fuel cell using vitamin K3-immobilized polymer as an electron mediator. Electrochem Commun 7:643–647

    Article  CAS  Google Scholar 

  66. Milton RD, Hickey DP, Abdellaoui S, Lim K, Wu F, Tan B, Minteer SD (2015) Rational design of quinones for high power density biofuel cells. Chem Sci 6:4867–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pinyou P, Ruff A, Pöller S, Ma S, Ludwig R, Schuhmann W (2016) Design of an Os complex-modified hydrogel with optimized redox potential for biosensors and biofuel cells. Chem Eur J 22:5319–5326

    Article  CAS  PubMed  Google Scholar 

  68. Silva SD, Shan D, Cosnier S (2004) Improvement of biosensor performances for nitrate determination using a new hydrophilic poly(pyrrole-viologen) film. Sens Actuat B Chem 103:397–402

    Article  CAS  Google Scholar 

  69. Nieh CH, Tsujimura S, Shirai O, Kano K (2013a) Electrostatic and steric interaction between redox polymers and some flavoenzymes in mediated bioelectrocatalysis. J Electroanal Chem 689:26–30

    Article  CAS  Google Scholar 

  70. Nieh CH, Tsujimura S, Shirai O, Kano K (2013b) Amperometric biosensor based on reductive H2O2 detection using pentacyanoferrate-bound polymer for creatinine determination. Anal Chim Acta 767:128–133

    Article  CAS  PubMed  Google Scholar 

  71. Contin A, Frasca S, Vivekananthan J, Leimkühler S, Wollenberger U, Plumeré N, Schuhmann W (2015) A pH responsive redox hydrogel for electrochemical detection of redox silent biocatalytic processes control of hydrogel solvation. Electroanalysis 27:938–944

    Article  CAS  Google Scholar 

  72. Pinyou P, Ruff A, Pöller S, Barwe S, Nebel M (2016) Thermoresponsive amperometric glucose biosensor. Biointerphases 11:011001

    Article  CAS  Google Scholar 

  73. Heller A (2006) Electron-conducting redox hydrogels: design, characteristics and synthesis. Curr Opin Chem Biol 10:664–672

    Article  CAS  PubMed  Google Scholar 

  74. Ruff A (2017) Redox polymers in bioelectrochemistry: common playgrounds and novel concepts. Curr Opin Electrochem 5:66–73

    Article  CAS  Google Scholar 

  75. Barton SC, Kim HH, Binyamin G, Zhang Y, Heller A (2001) Electroreduction of O2 to water on the “Wired” laccase cathode. J Phys Chem B 105:11917–11921

    Article  CAS  Google Scholar 

  76. Barton SC, Kim HH, Binyamin G, Zhang Y, Heller A (2001) The “Wired” laccase cathode: high current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5. J Am Chem Soc 123:5802–5803

    Google Scholar 

  77. Tsujimura S, Murata K (2015) Electrochemical oxygen reduction catalyzed by bilirubin oxidase with the aid of 2,2′-Azinobis(3-ethylbenzothiazolin-6-sulfonate) on a MgO-template carbon electrode. Electrochim. Acta 180:555–559

    Article  CAS  Google Scholar 

  78. Sakai K, Kitazumi Y, Shirai O, Kano K (2016) Bioelectrocatalytic formate oxidation and carbon dioxide reduction at high current density and low overpotential with tungsten-containing formate dehydrogenase and mediators. Electrochem Commun 65:31–34

    Article  CAS  Google Scholar 

  79. So K, Ozawa H, Onizuka M, Komukai T, Kitazumi Y, Shirai O, Kano K (2017) Highly permeable gas diffusion electrodes with hollow carbon nanotubes for bilirubin oxidase-catalyzed dioxygen reduction. Electrochim Acta 246:794–799

    Article  CAS  Google Scholar 

  80. Tsujimura S, Aya K, Kano K (2006) Osmium complex grafted on a carbon electrode surface as a mediator for a bioelectrocatalytic reaction. Chem Lett 35:1244–1245

    Article  CAS  Google Scholar 

  81. Tamaki T, Ito T, Yamaguchi T (2007) Immobilization of hydroquinone through a spacer to polymer grafted on carbon black for a high-surface-area biofuel cell electrode. J Phys Chem B 111:10312–10319

    Article  CAS  PubMed  Google Scholar 

  82. Jeon S, Bruice TC (1992) Redox chemistry of water-soluble iron, manganese, and chromium metalloporphyrins and acid-base behavior of their lyate axial ligands in aqueous solution: influence of electronic effects. Inorg Chem 31:4843–4848

    Article  CAS  Google Scholar 

  83. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. Marcel Dekker

    Google Scholar 

  84. Nakabayashi Y, Omayu A, Yagi S, Nakamura K, Motonaka J (2001) Evaluation of osmium(II) complexes as electron transfer mediators accessible for amperometric glucose sensors. Anal Sci 17:945–950

    Article  CAS  PubMed  Google Scholar 

  85. Koval CA, Pravata RLA, Reidsema CM (1984) Steric effects in electron-transfer reactions. 1. Trends in homogeneous rate constants for reactions between members of structurally related redox series. Inorg Chem 23:545–553

    Google Scholar 

  86. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochem Biophys Acta 1292:303–311

    PubMed  Google Scholar 

  87. Taniguchi I, Miyamoto S, Tomimura S, Hawkridge FM (1988a) Mediated electron transfer of lactate oxidase and sarcosine oxidase with octacyanotungstate (IV) and octacyanomolybdate (IV). J Electroanal Chem 240:333–339

    Article  CAS  Google Scholar 

  88. Data taken in the laboratory of T. Ikeda. Grad. Sch. Agric., Kyoto Univ.

    Google Scholar 

  89. Sawyer DT, Roberts JL (1974) Experimental electrochemistry for chemists. Wiley, pp 323–326

    Google Scholar 

  90. Coury Jr LA, Murray RW, Johnson JL, Rajagopalan KV (1991) Electrochemical study of kinetics of electron transfer between synthetic electron acceptors and reduced molybdoheme protein sulfite oxidase. J Phys Chem 95:6034–6040

    Google Scholar 

  91. Loach PA (1976) In: Fasman GD (ed) Handbook of biochemistry and molecular biology. Physical and chemical data, 3rd edn, vol I. CRC, pp 123–130

    Google Scholar 

  92. Tsujimura S, Tatsumi H, Ogawa J, Shimizu S, Kano K, Ikeda T (2001) Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2’-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator. J Electroanal Chem 496:69–75

    Article  CAS  Google Scholar 

  93. Bourdillon C, Demaille C, Moiroux J, Savéant J-M (1993) New insights into the enzymic catalysis of the oxidation of glucose by native and recombinant glucose oxidase mediated by electrochemically generated one-electron redox cosubstrates. J Am Chem Soc 115:1–10

    Article  Google Scholar 

  94. Berka A, Vulterin J, Zyka J (1965) Newer redox titrants. Pergamon, New York

    Google Scholar 

  95. Kano K (2002) Redox potentials of proteins and other compounds of bioelectrochemical interest in aqueous solutions. Rev Polarogr 48:29–46

    Article  Google Scholar 

  96. Heineman WR, Norris BJ, Goelz JF (1975) Measurement of enzyme E°’ values by optically transparent thin layer electrochemical cells. Anal Chem 47:79–84

    Article  CAS  PubMed  Google Scholar 

  97. Clark WM (1960) Oxidation-reduction potentials of organic systems. Williams & Wilkins, Baltimore

    Google Scholar 

  98. Fuhrhop JH, Mauzerall D (1969) One-electron oxidation of metalloporphyrins. J Am Chem Soc 91:4174–4181

    Article  CAS  PubMed  Google Scholar 

  99. Taniguchi I, Miyamoto S, Tomimura S, Hawkridge FM (1988b) Mediated electron transfer of lactate oxidase and sarcosine oxidase with octacyanotungstate(IV) and octacyanomolybdate(IV). J Electroanal Chem 240:333–339

    Article  CAS  Google Scholar 

  100. Faulkner KM, Bonaventura C, Crumbliss AL (1995) A Spectroelectrochemical method for differentiation of steric and electronic effects in hemoglobins and myoglobins. J Biol Chem 270:13604–13612

    Article  CAS  PubMed  Google Scholar 

  101. Lardy HA (1949) Respiratory enzymes. Burgess, Minneapolis

    Google Scholar 

  102. Itoh S, Ogino M, Haranou S, Terasaka T, Ando T, Komatsu M, Ohshiro Y, Fukuzumi S, Kano K, Takagi K, Ikeda T (1995) A model compound of novel cofactor tryptophan tryptophylquinone of bacterial methylamine dehydrogenases. synthesis and physicochemical properties. J Am Chem Soc 117:1485–1493

    Google Scholar 

  103. Morton RA, Gloor U, Schindler O, Wilson GM, Chopard-dit-Jean LH, Hemming FW, Isler O, Leat W, Pennock JF, Rüegg R, Schwieter U, Wiss O (1958) Die Struktur des Ubichinons aus Schweineherzen. Helv Chim Acta 41:2343–2357

    Article  CAS  Google Scholar 

  104. Jagendorf AT, Marguiliea M (1960) Inhibition of spinach chloroplast photosynthetic reactions by p-chlorophenyl-1,1-dimethylurea. Arch Biochem Biophys 90:184–195

    Article  CAS  PubMed  Google Scholar 

  105. Kano K, Mori T, Uno B, Goto M, Ikeda T (1993) Characterization of topa quinone cofactor. Biochim Biophys Acta 1157:324–331

    Article  CAS  PubMed  Google Scholar 

  106. Kano K, Mori K, Uno B, Kubota T, Ikeda T, Senda M (1990) Voltammetric and spectroscopic studies of pyrroloquinoline quinone coenzyme under neutral and basic conditions. Bioelectrochem Bioenerg 23:227–238

    Article  CAS  Google Scholar 

  107. Duine JA, Jzn FF, Verwiel PEJ (1981) Characterization of the second prosthetic group in methanol dehydrogenase from Hyphomicrobium X. Eur J Biochem 118:395–399

    Google Scholar 

  108. Pollegioni L, Porrini D, Molla G, Pilone MS (2000) Redox potentials and their pH dependence of D-amino-acid oxidase of Rhodotorula gracilis and Trigonopsis variabilis. Eur J Biochem 267:6624–6632

    Article  CAS  PubMed  Google Scholar 

  109. Yamazaki S, Isawa K, Kano K, Ikeda T, Taketomo N, Kaneko T (2000) Ascorbate regeneration by the reduced form of 2-amino-3-carboxy-1,4-naphthoquinone, a strong growth stimulator for bifidobacteria. J. Agric. Food Chem. 48:5643–5648

    Article  CAS  PubMed  Google Scholar 

  110. Maeda H, Matsu-ura S, Senba T, Yamasaki S, Takai H, Yamauchi Y, Ohmori H (2000) Resorufin as an electron acceptor in glucose oxidase-catalyzed oxidation of glucose. Chem Pharm Bull 48:897–902

    Article  CAS  Google Scholar 

  111. Yamazaki S, Kano K, Ikeda T, Iwasa K, Kaneko T (1998) Mechanistic study on the roles of a bifidogenetic growth stimulator based on physicochemical characterization. Biochem Biophys Acta 1425:516–526

    Article  CAS  PubMed  Google Scholar 

  112. Swenson RP, Krey GD (1994) Site-directed mutagenesis of tyrosine-98 in the flavodoxin from desulfovibrio vulgaris (Hildenborough): regulation of oxidationreduction properties of the bound FMN cofactor by aromatic solvent, and electrostatic interactions. Biochemistry 33:8505–8514

    Article  CAS  PubMed  Google Scholar 

  113. Stankovich MT, Schopfer LM, Massay V (1978) Determination of glucose oxidase oxidation-reduction potentials and the oxygen reactivity of fully reduced and semiquinoid forms. J Biol Chem 253:4971–4979

    Google Scholar 

  114. Kirstein D, Kirstein L, Scheller F, Borcherding H, Ronnenberg J, Diekman S, Steinrucke P (1999) Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase. J Electroanal Chem 474:43–51

    Article  CAS  Google Scholar 

  115. Lacey ALD, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM (1997) Infrared-spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio gigas. J Am Chem Soc 119:7181–7189

    Google Scholar 

  116. Weber (1961) In: Long C (ed) Biochemists’ handbook. Spon, London, p 81

    Google Scholar 

  117. Lowe HJ, Clark WM (1956) Studies on oxidation-reduction XXIV. Oxidation-reduction potentials of flavin adenine dinucleotide. J Biol Chem 221:983–992

    Google Scholar 

  118. Wilson DF, Erecinska M, Dutton PL (1974) Thermodynamic relationships in mitochondrial oxidative phosphorylation. Annu Rev Biophys Bioeng 3:203–230

    Article  CAS  PubMed  Google Scholar 

  119. Breyer B, Buchanan GS, Duewell H (1944) The reduction potentials of acridines, with reference to their antiseptic activity. J Chem Soc 360–363

    Google Scholar 

  120. Burton K (1957) Free energy data of biological interest. Ergeb Psysio 49:275–298

    Google Scholar 

  121. Loach PA (1976) In: Fasman GD (ed) Handbook of biochemistry and molecular biology. Physical and chemical data, 3rd edn., vol I. CRC, p 129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kano .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kano, K., Shirai, O., Kitazumi, Y., Sakai, K., Xia, HQ. (2021). MET-Type Bioelectrocatalysis. In: Enzymatic Bioelectrocatalysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-8960-7_2

Download citation

Publish with us

Policies and ethics