Skip to main content
Log in

Small electron-transfer proteins as mediators in enzymatic electrochemical biosensors

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical mediators transfer redox equivalents between the active sites of enzymes and electrodes and, in this way, initiate bioelectrocatalytic redox processes. This has been very useful in the development of the so-called second-generation biosensors, in which they transduce a catalyzed reaction into an electrical signal. Among other pre-requisites, redox mediators must be readily oxidized and/or reduced at the electrode surface and readily interact with the biorecognition component. Small chemical compounds (e.g. ferrocene derivatives, ruthenium, or osmium complexes and viologens) are frequently used for this purpose but, lately, small redox proteins (e.g. horse heart cytochrome c) have also been used as redox partners in biosensing applications. In general, docking between two complementary proteins introduces a second level of selectivity to the biosensor and enlarges the list of compounds analyzed. Moreover, electrochemical interferences are frequently minimized owing to the small overpotentials achieved. This paper provides an overview of enzyme biosensors that are mediated by electron-transfer proteins. The paper begins with a brief discussion of mediated electrochemistry in biosensing systems and proceeds with a detailed description of relevant work on the cooperative use of redox enzymes and biological electron donors and/or acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scheller FW, Wollenberger U, Lei C, Jin W, Ge B, Lehmann C, Lisdat F, Fridman V (2002) Bioelectrocatalysis by redox enzymes at modified electrodes. Rev Mol Biotechnol 82(4):411–424

    Article  CAS  Google Scholar 

  2. Liu H, Hill HAO, Chapman SK (2001) Electrochemistry of the flavodehydrogenase domain of flavocytochrome b2 engineered for l-mandelate dehydrogenase activity. J Electroanal Chem 500(1–2):598–603

    CAS  Google Scholar 

  3. Alvarez-lcaza M, Bilitewski U (1993) Mass production of biosensors. Anal Chem 65(11):525A–533A

    Article  Google Scholar 

  4. Frew JE, Hill HAO (1987) Electrochemical biosensors. Anal Chem 59(15):933A–944A

    CAS  Google Scholar 

  5. Ferapontova E, Gorton L (2005) Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes. Bioelectrochemistry 66(1–2):55–63

    Article  CAS  Google Scholar 

  6. Leger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem Rev 108(7):2379–2438

    Article  CAS  Google Scholar 

  7. Gooding JJ, Hibbert DB (1999) The application of alkanethiol self-assembled monolayers to enzyme electrodes. Trends Anal Chem 18(8):525–533

    Article  CAS  Google Scholar 

  8. Lojou É, Bianco P (2006) Application of the electrochemical concepts and techniques to amperometric biosensor devices. J Electroceram 16(1):79–91

    Article  CAS  Google Scholar 

  9. Noll T, Noll G (2011) Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology. Chem Soc Rev 40(7):3564–3576

    Article  Google Scholar 

  10. Ikeda T, Kano K (2001) An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells. J Biosci Bioeng 92(1):9–18

    CAS  Google Scholar 

  11. Katz E, Shipway AN, Willner I (2007) Mediated electron-transfer between redox-enzymes and electrode supports. In: Encyclopedia of electrochemistry. Wiley–VCH

  12. Bt L, Moiroux J, Savéant J-M (2002) Kinetic control by the substrate and/or the cosubstrate in electrochemically monitored redox enzymatic homogeneous systems. Catalytic responses in cyclic voltammetry. J Electroanal Chem 521(1–2):1–7

    Google Scholar 

  13. Almeida MG, Serra A, Silveira CM, Moura JJG (2010) Nitrite biosensing via selective enzymes - a long but promising route. Sensors 10(12):11530–11555

    Article  CAS  Google Scholar 

  14. Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104(10):4867–4886

    Article  CAS  Google Scholar 

  15. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763

    Article  CAS  Google Scholar 

  16. Yamamoto K, Takagi K, Kano K, Ikeda T (2001) Bioelectrocatalytic detection of histamine using quinohemoprotein amine dehydrogenase and the native electron acceptor cytochrome c-550. Electroanalysis 13(5):375–379

    Article  CAS  Google Scholar 

  17. Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17(6–7):441–456

    Article  CAS  Google Scholar 

  18. Heller A (1996) Amperometric biosensors. Curr Opin Biotechnol 7(1):50–54

    Article  CAS  Google Scholar 

  19. Kano K, Ikeda T (2000) Fundamentals and practices of mediated bioelectrocatalysis. Anal Sci 16:1013–1021

    Article  CAS  Google Scholar 

  20. Bushnell GW, Louie GV, Brayer GD (1990) High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol 214(2):585–595

    Article  CAS  Google Scholar 

  21. Arnesano F, Banci L, Bertini I, Faraone-Mennella J, Rosato A, Barker PD, Fersht AR (1999) The solution structure of oxidized Escherichia coli cytochrome b562. Biochemistry 38(27):8657–8670

    Article  CAS  Google Scholar 

  22. Timkovich R, Dickerson RE (1976) The structure of Paracoccus denitrificans cytochrome c550. J Biol Chem 251(13):4033–4046

    CAS  Google Scholar 

  23. Matsuura Y, Takano T, Dickerson RE (1982) Structure of cytochrome c551 from Pseudomonas aeruginosa refined at 1.6 Å resolution and comparison of the two redox forms. J Mol Biol 156(2):389–409

    Article  CAS  Google Scholar 

  24. Brown K, Nurizzo D, Besson S, Shepard W, Moura J, Moura I, Tegoni M, Cambillau C (1999) MAD structure of pseudomonas nautica dimeric cytochrome c552Mimicks thec4 dihemic cytochrome domain association. J Mol Biol 289(4):1017–1028

    Article  CAS  Google Scholar 

  25. Petratos K, Dauter Z, Wilson KS (1988) Refinement of the structure of pseudoazurin from Alcaligenes faecalis S-6 at 1.55 A resolution. Acta Crystallogr B 44(Pt 6):628–636

    Article  Google Scholar 

  26. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  27. Astier Y, Canters GW, Davis JJ, Hill HA, Verbeet MP, Wijma HJ (2005) Sensing nitrite through a pseudoazurin-nitrite reductase electron transfer relay. ChemPhysChem 6(6):1114–1120

    Article  CAS  Google Scholar 

  28. Serra AS, Jorge SR, Silveira CM, Moura JJG, Jubete E, Ochoteco E, Cabañero G, Grande H, Almeida MG (2011) Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to improve the selectivity of nitrite biosensing. Anal Chim Acta 693(1–2):41–46

    Article  CAS  Google Scholar 

  29. Dronov R, Kurth DG, Scheller FW, Lisdat F (2007) Direct and cytochrome c mediated electrochemistry of bilirubin oxidase on gold. Electroanalysis 19(15):1642–1646

    Article  CAS  Google Scholar 

  30. Okuda J, Wakai J, Yuhashi N, Sode K (2003) Glucose enzyme electrode using cytochrome b562 as an electron mediator. Biosens Bioelectron 18(5–6):699–704

    Article  CAS  Google Scholar 

  31. Dronov R, Kurth DG, Möhwald H, Spricigo R, Leimkühler S, Wollenberger U, Rajagopalan KV, Scheller FW, Lisdat F (2008) Layer-by-layer arrangement by protein−protein interaction of sulfite oxidase and cytochrome c catalyzing oxidation of sulfite. J Am Chem Soc 130(4):1122–1123

    Article  CAS  Google Scholar 

  32. Narvaez A, Dominguez E, Katakis I, Katz E, Ranjit KT, Ben-Dov I, Willner I (1997) Microperoxidase-11-mediated reduction of hemoproteins: electrocatalyzed reduction of cytochrome c, myoglobin and hemoglobin and electrocatalytic reduction of nitrate in the presence of cytochrome-dependent nitrate reductase. J Electroanal Chem 430(1–2):227–233

    CAS  Google Scholar 

  33. Willner I, Heleg-Shabtai V, Katz E, Rau HK, Haehnel W (1999) Integration of a reconstituted de novo synthesized hemoprotein and native metalloproteins with electrode supports for bioelectronic and bioelectrocatalytic applications. J Am Chem Soc 121(27):6455–6468

    Article  CAS  Google Scholar 

  34. Lojou E, Cutruzzolà F, Tegoni M, Bianco P (2003) Electrochemical study of the intermolecular electron transfer to Pseudomonas aeruginosa cytochrome cd1 nitrite reductase. Electrochim Acta 48(8):1055–1064

    Article  CAS  Google Scholar 

  35. De Wael K, Bashir Q, Van Vlierberghe S, Dubruel P, Heering HA, Adriaens A (2012) Electrochemical determination of hydrogen peroxide with cytochrome c peroxidase and horse heart cytochrome c entrapped in a gelatin hydrogel. Bioelectrochemistry 83:15–18

    Article  Google Scholar 

  36. Moretto LM, Bertoncello P, Vezza F, Ugo P (2005) Electrochemistry of cytochrome c incorporated in Langmuir-Blodgett films of Nafion and Eastman AQ 55. Bioelectrochemistry 66(1–2):29–34

    Article  CAS  Google Scholar 

  37. Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Cytochrome P450 biosensors-a review. Biosens Bioelectron 20(12):2408–2423

    Article  CAS  Google Scholar 

  38. Dronov R, Kurth DG, Möhwald H, Scheller FW, Lisdat F (2008) Communication in a protein stack: electron transfer between cytochrome c and bilirubin oxidase within a polyelectrolyte multilayer. Angew Chem Int Ed 47(16):3000–3003

    Article  CAS  Google Scholar 

  39. Fedurco M (2000) Redox reactions of heme-containing metalloproteins: dynamic effects of self-assembled monolayers on thermodynamics and kinetics of cytochrome c electron-transfer reactions. Coord Chem Rev 209(1):263–331

    Article  CAS  Google Scholar 

  40. Sarauli D, Ludwig R, Haltrich D, Gorton L, Lisdat F (2012) Investigation of the mediated electron transfer mechanism of cellobiose dehydrogenase at cytochrome c-modified gold electrodes. Bioelectrochemistry 87:9–14

    Article  CAS  Google Scholar 

  41. Cass AEG, Davis G, Hill HAQ, Nancarrow DJ (1985) The reaction of flavocytochrome b2 with cytochrome c and ferricinium carboxylate. Comparative kinetics by cyclic voltammetry and chronoamperometry. Biochim Biophys Acta Protein Struct Mol Enzymol 828(1):51–57

    Article  CAS  Google Scholar 

  42. Coury LA, Oliver BN, Egekeze JO, Sosnoff CS, Brumfield JC, Buck RP, Murray RW (1990) Mediated, anaerobic voltammetry of sulfite oxidase. Anal Chem 62(5):452–458

    Article  CAS  Google Scholar 

  43. Fridman V, Wollenberger U, Bogdanovskayat V, Lisdat F, Ruzgasf T, Lindgrenl A, Gortonf L, Scheller FW (2000) Electrochemical investigation of cellobiose oxidation by cellobiose dehydrogenase in the presence of cytochrome c as mediator. Biochem Soc Trans 28:63–70

    CAS  Google Scholar 

  44. Feifel SC, Ludwig R, Gorton L, Lisdat F (2012) Catalytically active silica nanoparticle-based supramolecular architectures of two proteins–cellobiose dehydrogenase and cytochrome C on electrodes. Langmuir 28(25):9189–9194

    Article  CAS  Google Scholar 

  45. Wegerich F, Turano P, Allegrozzi M, Mohwald H, Lisdat F (2011) Electroactive multilayer assemblies of bilirubin oxidase and human cytochrome C mutants: insight in formation and kinetic behavior. Langmuir 27(7):4202–4211

    Article  CAS  Google Scholar 

  46. Dronov R, Kurth DG, Möhwald H, Scheller FW, Lisdat F (2007) A self-assembled cytochrome c/xanthine oxidase multilayer arrangement on gold. Electrochim Acta 53(3):1107–1113

    Article  CAS  Google Scholar 

  47. Balkenhohl T, Adelt S, Dronov R, Lisdat F (2008) Oxygen-reducing electrodes based on layer-by-layer assemblies of cytochrome c and laccasse. Electrochem Commun 10(6):914–917

    Article  CAS  Google Scholar 

  48. Abass AK, Hart JP, Cowell D (2000) Development of an amperometric sulfite biosensor based on sulfite oxidase with cytochrome c, as electron acceptor, and a screen-printed transducer. Sensors Actuators B 62(2):148–153

    Article  Google Scholar 

  49. Spricigo R, Dronov R, Lisdat F, Leimkühler S, Scheller F, Wollenberger U (2009) Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer. Anal Bioanal Chem 393(1):225–233

    Article  CAS  Google Scholar 

  50. Spricigo R, Dronov R, Rajagopalan KV, Lisdat F, Leimkuhler S, Scheller FW, Wollenberger U (2008) Electrocatalytically functional multilayer assembly of sulfite oxidase and cytochrome c. Soft Matter 4(5):972–978

    Article  CAS  Google Scholar 

  51. Hart JP, Abass AK, Cowell D (2002) Development of disposable amperometric sulfur dioxide biosensors based on screen printed electrodes. Biosens Bioelectron 17(5):389–394

    Article  CAS  Google Scholar 

  52. Heleg-Shabtai V, Katz E, Willner I (1997) Assembly of microperoxidase-11 and Co(II)-Protoporphyrin IX reconstituted myoglobin monolayers on au-electrodes: integrated bioelectrocatalytic interfaces. J Am Chem Soc 119(34):8121–8122

    Article  CAS  Google Scholar 

  53. Patolsky F, Katz E, Heleg-Shabtai V, Willner I (1998) A crosslinked microperoxidase-11 and nitrate reductase monolayer on a gold electrode: an integrated electrically contacted electrode for the bioelectrocatalyzed reduction of NO3−. Chem Eur J 4(6):1068–1073

    Article  CAS  Google Scholar 

  54. Gobi VK, Mizutani F (2001) Layer-by-layer construction of an active multilayer enzyme electrode applicable for direct amperometric determination of cholesterol. Sensors Actuators B Chem 80(3):272–277

    Article  Google Scholar 

  55. Katz E, Heleg-Shabtai V, Willner I, Rau HK, Haehnel W (1998) Surface reconstitution of a de novo synthesized hemoprotein for bioelectronic applications. Angew Chem Int Ed 37(23):3253–3256

    Article  CAS  Google Scholar 

  56. Okuda J, Wakai J, Sode K (2002) The application of cytochromes as the interface molecule to facilitate the electron transfer for PQQ glucose dehydrogenase employing mediator type glucose sensor. Anal Lett 35(9):1465–1478

    Article  CAS  Google Scholar 

  57. Tepper AWJW (2010) Electrical contacting of an assembly of pseudoazurin and nitrite reductase using DNA-directed immobilization. J Am Chem Soc 132(18):6550–6557

    Article  CAS  Google Scholar 

  58. Bond AM (1994) Chemical and electrochemical approaches to the investigation of redox reactions of simple electron transfer metalloproteins. Inorg Chim Acta 226(1–2):293–340

    Article  CAS  Google Scholar 

  59. Hill HAO, Walton NJ (1982) Investigation of some intermolecular electron transfer reactions of cytochrome c by electrochemical methods. J Am Chem Soc 104(24):6515–6519

    Article  CAS  Google Scholar 

  60. Jin W, Wollenberger U, Bier FF, Makower A, Scheller FW (1996) Electron transfer between cytochrome c and copper enzymes. Bioelectrochem Bioenerg 39(2):221–225

    Article  CAS  Google Scholar 

  61. Sakurai T (1992) Kinetics of electron transfer between cytochrome c and laccase. Biochemistry 31(40):9844–9847

    Article  CAS  Google Scholar 

  62. Jin W, Wollenberger U, Kärgel E, Schunck W-H, Scheller FW (1997) Electrochemical investigations of the intermolecular electron transfer between cytochrome c and NADPH-cytochrome P450-reductase. J Electroanal Chem 433(1–2):135–139

    CAS  Google Scholar 

  63. Tabacchi G, Zucchini D, Caprini G, Gamba A, Lederer F, Vanoni MA, Fois E (2009) l-Lactate dehydrogenation in flavocytochrome b2. FEBS J 276(8):2368–2380

    Article  CAS  Google Scholar 

  64. Z-x X, Mathews FS (1990) Molecular structure of flavocytochrome b2 at 24 Å resolution. J Mol Biol 212(4):837–863

    Article  Google Scholar 

  65. Fishel LA, Villafranca JE, Mauro JM, Kraut J (1987) Yeast cytochrome c peroxidase: mutagenesis and expression in Escherichia coli show tryptophan-51 is not the radical site in compound I. Biochemistry 26(2):351–360

    Article  CAS  Google Scholar 

  66. Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 77(5):1804–1815

    Article  CAS  Google Scholar 

  67. Henriksson G, Ander P, Pettersson B, Pettersson G (1995) Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol 42(5):790–796

    Article  CAS  Google Scholar 

  68. Cracknell JA, McNamara TP, Lowe ED, Blanford CF (2011) Bilirubin oxidase from Myrothecium verrucaria: X-ray determination of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction. Dalton Trans 40(25):6668–6675

    Article  CAS  Google Scholar 

  69. Lisdat F, Dronov R, Mohwald H, Scheller FW, Kurth DG (2009) Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains. Chem Commun 3:274–283

    Article  Google Scholar 

  70. Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96(7):2757–2816

    Article  CAS  Google Scholar 

  71. Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  Google Scholar 

  72. Feng C, Tollin G, Enemark JH (2007) Sulfite oxidizing enzymes. Biochim Biophys Acta Protein Proteomics 1774(5):527–539

    Article  CAS  Google Scholar 

  73. Moura I, Moura JJ (2001) Structural aspects of denitrifying enzymes. Curr Opin Chem Biol 5(2):168–175

    Article  CAS  Google Scholar 

  74. MacLachlan J, Wotherspoon ATL, Ansell RO, Brooks CJW (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J Steroid Biochem Mol Biol 72(5):169–195

    Article  CAS  Google Scholar 

  75. Hecht HJ, Schomburg D, Kalisz H, Schmid RD (1993) The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme. Biosens Bioelectron 8(3–4):197–203

    Article  CAS  Google Scholar 

  76. Oubrie A, Rozeboom HJ, Kalk KH, Duine JA, Dijkstra BW (1999) The 1.7 Å crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus reveals a novel internal conserved sequence repeat. J Mol Biol 289(2):319–333

    Article  CAS  Google Scholar 

  77. Fujieda N, Mori M, Ikeda T, Kano K (2009) The silent form of quinohemoprotein amine dehydrogenase from paracoccus denitrificans. Biosci Biotechnol Biochem 73(3):524–529

    Article  CAS  Google Scholar 

  78. Lopes H, Besson S, Moura I, Moura JJG (2001) Kinetics of inter- and intramolecular electron transfer of Pseudomonas nautica cytochrome cd 1 nitrite reductase: regulation of the NO-bound end product. J Biol Inorg Chem 6(1):55–62

    Article  CAS  Google Scholar 

  79. Najmudin S, Pauleta SR, Moura I, Romao MJ (2010) The 1.4 A resolution structure of Paracoccus pantotrophus pseudoazurin. Acta Crystallogr F 66(6):627–635

    Article  Google Scholar 

  80. Laming EM, McGrath AP, Guss JM, Kappler U, Maher MJ (2012) The X-ray crystal structure of a pseudoazurin from Sinorhizobium meliloti. J Inorg Biochem 115:148–154

    Google Scholar 

  81. Willner I, Willner B (2001) Biomaterials integrated with electronic elements: en route to bioelectronics. Trends Biotechnol 19(6):222–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.M. Silveira thanks the Fundação para a Ciência e Tecnologia for financial support (post-doctoral fellowship SFRH/BPD/79566/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gabriela Almeida.

Additional information

Published in the topical collection Bioelectroanalysis with guest editors Nicolas Plumeré, Magdalena Gebala, and Wolfgang Schuhmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira, C.M., Almeida, M.G. Small electron-transfer proteins as mediators in enzymatic electrochemical biosensors. Anal Bioanal Chem 405, 3619–3635 (2013). https://doi.org/10.1007/s00216-013-6786-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6786-4

Keywords

Navigation