Skip to main content

Thrips

  • Chapter
  • First Online:
Polyphagous Pests of Crops

Abstract

Thrips are economically important insect pests across the global agroecosystems. They belong to order Thysanoptera. They are phytophagous, predaceous or mycophagous insect pests that inhabit a broad range of habitats. Although about 7700 species of thrips have been reported to date, hardly 1% of the species of this group damage the crops. Still their importance cannot be overestimated. Thrips have piercing and sucking types of mouthparts; as a result, they damage the crops either by feeding or by enormous oviposition. Since biocontrol methods using predaceous bugs and mites are largely unsuccessful, chemical insecticides are commonly used for managing thrips populations. However, entomopathogenic fungi are other potential biocontrol agents for certain thrips species. Nowadays, omic-based techniques and advanced computational systems are the powerful tools for crop protection. Assessing plant–thrips interactions, exploring genetic diversity amongst thrips species and using resistant crop varieties may possibly assist in suppressing their populations below economic threshold in the near future. In this chapter, economic importance of thrips as insect pests and their management methods have been discussed so that they may not affect the global crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allsopp E, Prinsloo GJ, Smart LE et al (2014) Methyl salicylate, thymol and carvacrol as oviposition deterrents for Frankliniella occidentalis (Pergande) on plum blossoms. Arthropod Plant Inte 8:421–427

    Article  Google Scholar 

  • Ananthakrishnan TN (1984) Bioecology of thrips. Indira Publishing House, Oak Park

    Google Scholar 

  • Ananthakrishnan TN (1993) Bionomics of thrips. Annu Rev Entomol 38:71–92

    Article  Google Scholar 

  • Annadana S, Peters J, Gruden K et al (2002) Effects of cysteine protease inhibitors on oviposition rate of the western flower thrips, Frankliniella occidentalis. J Insect Physiol 48:701–706

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Brownbridge M, Shah FA et al (2008) Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis in plant-growing media. Entomol Exp Appl 127:80–87

    Article  Google Scholar 

  • Arthurs S, Heinz KM (2006) Evaluation of the nematodes Steinernema feltiae and Thripinema nicklewoodi as biological control agents of western flower thrips Frankliniella occidentalis infesting chrysanthemum. Biocontrol Sci Tech 16:141–155

    Article  Google Scholar 

  • Arzone A, Alma A, Rapetti S (1989) Frankliniella occidentalis (Perg.) (Thysanoptera: Thripidae) nuovo fitomizo délie serre in Italia. Inf Fitopat 39:43–48

    Google Scholar 

  • Bao WX, Narai Y, Nakano A et al (2014) Spinosad resistance of melon thrips, Thrips palmi, is conferred by G275E mutation in α6 subunit of nicotinic acetylcholine receptor and cytochrome P450 detoxification. Pestic Biochem Physiol 112:51–55

    Article  CAS  PubMed  Google Scholar 

  • Berndt O, Poehling HM, Meyhöfer R (2004) Predation capacity of two predatory laelapid mites on soil-dwelling thrips stages. Entomol Exp Appl 112:107–115

    Article  Google Scholar 

  • Bielza P (2008) Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Manag Sci 64:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Boateng CO, Schwartz HF, Havey MJ et al (2014) Evaluation of onion germplasm for resistance to Iris yellow spot (Iris yellow spot virus) and onion thrips, Thrips tabaci. Southwest Entomol 39:237–261

    Article  Google Scholar 

  • Boiteux LS, De Avilla AC (1994) Inheritance of a resistance specific to tomato spotted wilt tospovirus in Capsicum chinense ‘PI 159236’. Euphitica 75:139–142

    Article  Google Scholar 

  • Boumier A (1954) Le thrips du glaieul: Taeniothrips simplex Morison. Phytoma 58:10–14

    Google Scholar 

  • Bournier A (1956a) Contribution à l’étude de la parthénogenèse des thysanopterès et de sa cytologie. Arch Zool Exp Gen 93:221–318

    Google Scholar 

  • Bournier A (1956b) Un nouveau cas de parténogenèse arrénotoque: Liothrips oleae Costa. Arch Zool Exp Gen 93:135–141

    Google Scholar 

  • Bournier A (1983) Les thrips. Biologie, Importance Agronomique. INRA, Paris

    Google Scholar 

  • Bragard C, Dehnen-Schmutz K, Di Serio F et al (2019) Pest categorisation of Thrips palmi. EFSA PLH Panel 17:e05620

    Google Scholar 

  • Brodsgaard HF (1989) Frankliniella occidentalis (Thysanoptera: Thripidae) – a new pest in Danish glasshouses. A review. Tidsskr Planteavl 93:83–91

    Google Scholar 

  • Broughton S, Cousins DA, Rahman T (2015) Evaluation of semiochemicals for their potential application in mass trapping of Frankliniella occidentalis (Pergande) in roses. Crop Prot 67:130–135

    Article  CAS  Google Scholar 

  • Buitenhuis R, Murphy G, Shipp L et al (2015) Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Exp Appl Acarol 65:451–464

    Article  PubMed  Google Scholar 

  • Buitenhuis R, Shipp JL, Jandricic S et al (2007) Effectiveness of insecticide-treated and non-treated trap plants for the management of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse ornamentals. Pest Manag Sci 63:910–917

    Article  CAS  PubMed  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C (2010) Intra-guild vs extra guild prey: predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Bull Entomol Res 100:167–173

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Story R, Samuel-Foo M (2014) Effects of nitrogen and phosphorous fertilization on western flower thrips population level and quality of susceptible and resistant Impatiens. Adv Crop Sci Technol 2:145

    Google Scholar 

  • Childers CC, Beshear RJ (1992) Thrips (Thysanoptera) species associated with developing citrus flowers in Florida and a key to adult Terebrantian females. J Entomol Sei 27:392–412

    Google Scholar 

  • Chow A, Chau A, Heinz KM (2012) Reducing fertilization: a management tactic against western flower thrips on roses. J Appl Entomol 136:520–529

    Article  Google Scholar 

  • Chyzik R, Ben-Dov Y, Nakache Y, Klein M (1995) Association of the western flower thrips (Frankliniella occidentalis) with cultivated sunflower (Helianthus annuus) in Israel. Phytoparasitica 23:147–155

    Article  Google Scholar 

  • Cook DF, Dadour IR, Bailey WJ (2002) Addition of alarm pheromone to insecticides and the possible improvement of the control of the western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Int J Pest Manag 48:287–290

    Article  CAS  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2006) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  Google Scholar 

  • Cox PD, Matthews L, Jacobson RJ et al (2006) Potential for the use of biological agents for the control of Thrips palmi (Thysanoptera: Thripidae) outbreaks. Biocontrol Sci Tech 16:871–891

    Article  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM et al (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937

    Article  PubMed  Google Scholar 

  • Del Bene G, Gargani E (1989) Contributo alia conoscenza di Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Redia 72:403–442

    Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT et al (2010) Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Montano J, Fuchs M, Nault BA et al (2011) Onion thrips (Thysanoptera: Thripidae): a global pest of increasing concern in onion. J Econ Entomol 104:1–13

    Article  PubMed  Google Scholar 

  • Dimitrov A (1976) Thrips tabaci Lind. In: Biological and ecological characteristics and possibilities for control. Inst Vasif Kolarov Plovdiv, p 35

    Google Scholar 

  • Dyadechko NP (1977) Thrips or Fringe-Winged Insects (Thysanoptera) of the European part of the USSR. Ukrainian Scientific Research Institute of Plant Protection. Amerind Publishing Co Pvt, New Delhi

    Google Scholar 

  • Ebssa L, Borgemeister C, Poehling HM (2004) Effectiveness of different species/strains of entomopathogenic nematodes for control of western flower thrips (Frankliniella occidentalis) at various concentrations, host densities, and temperatures. Biol Control 29:145–154

    Article  Google Scholar 

  • Ebssa L, Borgemeister C, Poehling HM (2006) Simultaneous application of entomopathogenic nematodes and predatory mites to control western flower thrips Frankliniella occidentalis. Biol Control 39:66–76

    Article  Google Scholar 

  • Eddy CO, Clarke WH (1930) The onion thrips on seedling cotton, with a season’s record of parthenogenetic development. J Econ Entomol 23:704–708

    Article  Google Scholar 

  • Edelson JV, Magaro JJ (1988) Development of onion thrips, Thrips tabaci Lindeman, as a function of temperature. Southwest Entomol 13:171–176

    Google Scholar 

  • Egger B, Koschier EH (2014) Behavioural responses of Frankliniella occidentalis Pergande larvae to methyl jasmonate and cis-jasmone. J Pest Sci 87:53–59

    Article  Google Scholar 

  • Egger B, Spangl B, Koschier EH (2014) Habituation in Frankliniella occidentalis to deterrent plant compounds and their blends. Entomol Exp Appl 151:231–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Lei Z, Reitz SR (2012) Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag Sci 68:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Ghabn AE (1932) Zur Biologie und Bekämpfung eines neues Nelkenschädlings aus der Gruppe der Thysanopteren in Aegypten. Inaugural Diss Hochsch, Berlin

    Google Scholar 

  • Gill HK, Garg H, Gill AK et al (2015) Onion Thrips (Thysanoptera: Thripidae) biology, ecology, and management in onion production systems. J Integr Pest Manag 6:6.ISO 690

    Article  Google Scholar 

  • Gokkes M (1991) Glasshouse pest control in flower crops in Israel. In: Joint EPPO-IOLB/EPS conference on plant protection in glasshouses. Naramowice (PL), pp 42–43

    Google Scholar 

  • Hamilton JG, Hall DR, Kirk WDJ (2005) Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. J Chem Ecol 31:1369–1379

    Article  CAS  PubMed  Google Scholar 

  • Herron G, James TM, Rophail J et al (2008) Australian population of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), are resistant to some insecticides used for their control. Aust J Entomol 47:361–364

    Article  Google Scholar 

  • Hulshof J, Ketoja E, Vänninen I (2003) Life history characteristics of Frankliniella occidentalis on cucumber leaves with and without supplemental food. Entomol Exp Appl 108:19–32

    Article  Google Scholar 

  • Ishaaya I, Kontsedalov S, Horowitz AR (2002) Emamectin, a novel insecticide for controlling field crop pests. Pest Manag Sci 58:1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Jenser G, Szenasi A (2004) Review of the biology and vector capability of Thrips tabaci Lindeman (Thysanoptera: Thripidae). Acta Phytopatho Entomol Hung 39:137–155

    Article  Google Scholar 

  • Karny H (1925) Thrips found on tobacco in Java and Sumatra. Bull Deli Proefstation 23:3–55

    Google Scholar 

  • Kigathi R, Poehling HM (2012) UV-absorbing films and nets affected the dispersal of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). J Appl Entomol 136:761–771

    Article  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549

    Article  CAS  PubMed  Google Scholar 

  • Kivett JM, Cloyd RA, Bello NM (2015) Insecticide rotation programs with entomopathogenic organisms for suppression of western flower thrips (Thysanoptera: Thripidae) adult populations under greenhouse conditions. J Econ Entomol 108:1936–1946

    Article  PubMed  Google Scholar 

  • Knapp M, Houten Y, Hoggerbrugge H, Bolckmans K (2013) Amblydromalus limonicus (Acari: Phytoseiidae) as a biocontrol agent: review and new findings. Acaralogia 53:102–202

    Google Scholar 

  • Koschier EH, Sedy KA, Novak J (2002) Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci. Crop Prot 21:419–425

    Article  CAS  Google Scholar 

  • Koschier EH, Kogel WJ, Visser JH (2000) Assessing the attractiveness of volatile plant compounds to western flower thrips Frankliniella occidentalis. J Chem Ecol 26:2643–2655

    Article  CAS  Google Scholar 

  • Lebedev G, Abo-Moch F, Gafni G et al (2013) High-level of resistance to spinosad, emamectin benzoate and carbosulfan in populations of Thrips tabaci collected in Israel. Pest Manag Sci 69:274–277

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Kim S, Kim JC et al (2017) Entomopathogenic Beauveria bassiana granules to control soil-dwelling stage of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). BioControl 62:639–648

    Article  CAS  Google Scholar 

  • Leiss KA, Choi YH, Verpoorte R et al (2011) An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance. Phytochem Rev 10:205–216

    Article  CAS  PubMed  Google Scholar 

  • Leiss KA, Cristofori G, Steenis R et al (2013) An eco-metabolomic study of host plant resistance to western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry 93:63–70

    Article  CAS  PubMed  Google Scholar 

  • Leiss KA, Maltese F, Choi YH et al (2009) Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 50:1567–1575

    Article  Google Scholar 

  • Leng Y, Peng G, Cao Y et al (2011) Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum. BMC Microbiol 11(1):32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis T (1973) Thrips. Their biology, ecology and economic importance. Academic, London/New York

    Google Scholar 

  • Loomans AJ (2006) Exploration for hymenopterous parasitoids of thrips. Bull Insectol 59:69–83

    Google Scholar 

  • Lowry VK, Smith JR, Mitchell FL (1992) Life-fertility tables for Frankliniella fusca (Hinds) and F. occidentalis (Pergande) (Thysanoptera: Thripidae) on peanut. Ann Entomol Soc Am 85:744–754

    Article  Google Scholar 

  • Lublinkhoff J, Foster DE (1977) Development and reproductive capacity of Frankliniella occidentalis (Thysanoptera: Thripidae) reared at three temperatures. J Kansas Entomol Soc:313–316

    Google Scholar 

  • MacDonald KM, Hamilton JG, Jacobson R et al (2002) Effects of alarm pheromone on landing and take-off by adult western flower thrips. Entomol Exp Appl 103:279–282

    Article  CAS  Google Scholar 

  • MacDonald KM, Hamilton JG, Jacobson R et al (2003) Analysis of anal droplets of the western flower thrips Frankliniella occidentalis. J Chem Ecol 29:2385–2389

    Article  CAS  PubMed  Google Scholar 

  • MacGill EI (1927) The biology of Thysanoptera with reference to the cotton plant. 2. The relation between temperature and life-cycle in a saturated atmosphere. Ann Appl Biol 14:501–512

    Article  Google Scholar 

  • Mantel WP, Van De Vrie M (1988) De Californische trips, Frankliniella occidentalis, een nieuwe schadelijke tripssoort in de tuinbouw onder glas in Nederland. Ent Ber Amst 48:140–144

    Google Scholar 

  • Marullo R (1991) Frankliniella, biologia e Strategie di difesa. Terra e Vita 15:72–73

    Google Scholar 

  • Messelink G, Holstein-Saj R (2008) Improving thrips control by the soil-dwelling predatory mite Macrocheles robustulus (Berlese). IOBC/WPRS Bull 32:135–138

    Google Scholar 

  • Messelink GJ, Janssen A (2014) Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biol Control 79:1–7

    Article  Google Scholar 

  • Mirnezhad M, Romero-Gonzalez RR, Leiss KA et al (2009) Metabolomics analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochem Anal 21:110–117

    Article  Google Scholar 

  • Mollema C, Cole RA (1996) Low aromatic amino acid concentrations in leaf proteins determine resistance to Frankliniella occidentalis in four vegetable crops. Entomol Exp Appl 78:325–333

    Article  CAS  Google Scholar 

  • Moritz G (1995) Morphogenetic development of some species of the order thysanoptera (Insecta). Plenum Publishing Co. Ltd, London

    Book  Google Scholar 

  • Morse JG, Hoddle MS (2006) Invasion biology of thrips. Annu Rev Entomol 51:67–89

    Article  CAS  PubMed  Google Scholar 

  • Mouden S, Sarmiento KF, Klinkhamer PG et al (2017) Integrated pest management in western flower thrips: past, present and future. Pest Manag Sci 73:813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mound LA (2013) Homologies and host-plant specificity: recurrent problems in the study of thrips. Fla Entomol:318–322

    Google Scholar 

  • Mound LA, Morris DC (2007) The insect order Thysanoptera: classification versus systematics. In: Zhang ZQ, Shear WA (eds) Linnaeus Tercentenary: progress in invertebrate taxonomy. Zootaxa 1668:1–766

    Google Scholar 

  • Mumford RA, Barker I, Wood KR (1996) The biology of the tospoviruses. Ann Appl Biol 128:159–183

    Article  Google Scholar 

  • Murai T, Loomans AJ (2001) Evaluation of an improved method for mass-rearing of thrips and a thrips parasitoid. Entomol Exp Appl 101:281–289

    Article  Google Scholar 

  • Murai T (2001) Life history study of Thrips setosus. Entomol Exp Appl 100:245–251

    Article  Google Scholar 

  • Nakahara S (1991) Systematics of Thysanoptera, pear thrips and other economic species. Gen Tech Rep NE 147:41–59

    Google Scholar 

  • Ngakou A, Tamò M, Parh IA et al (2008) Management of cowpea flower thrips, Megalurothrips sjostedti (Thysanoptera, Thripidae), in Cameroon. Crop Prot 27:481–488

    Article  CAS  Google Scholar 

  • Northfield TD, Paini DR, Funderburk JE et al (2008) Annual cycles of Franklinella spp. (Thysanoptera: Thripidae) thrips abundance on North Florida uncultivated reproductive hosts: predicting possible sources of pest outbreaks. Ann Entomol Soc Am 101:769–778

    Article  Google Scholar 

  • Nyasani JO, Meyhöfer R, Subramanian S et al (2012) Effect of intercrops on thrips species composition and population abundance on French beans in Kenya. Entomol Exp Appl 142:236–246

    Article  Google Scholar 

  • Nyasani JO, Meyhöfer R, Subramanian S et al (2013) Feeding and oviposition of Frankliniella occidentalis for crops and weeds in Kenyan French bean fields. J Appl Entomol 137:204–213

    Article  Google Scholar 

  • Olaniran OA, Sudhakar AV, Drijfhout FP et al (2013) A male-predominant cuticular hydrocarbon, 7-methyltricosane, is used as a contact pheromone in the western flower thrips Frankliniella occidentalis. J Chem Ecol 39:559–568

    Article  CAS  PubMed  Google Scholar 

  • Ong TWY, Vandermeer JH (2015) Coupling unstable agents in biological control. Nat Commun 6:59–91

    Article  Google Scholar 

  • Outchkourov NS, Kogel WJ, Wiegers GL et al (2004) Engineered multidomain cysteine protease inhibitors yield resistance against western flower thrips (Frankliniella occidentalis) in greenhouse trials. Plant Biotechnol J 2:449–458

    Article  CAS  PubMed  Google Scholar 

  • Pappu HR, Csinos AS, McPherson RM et al (2000) Effect of acibenzolar-S-methyl and imidacloprid on suppression of tomato spotted wilt tospovirus in flue-cured tobacco. Crop Prot 19:349–354

    Article  CAS  Google Scholar 

  • Parker BL, Margaret S, Trevor L (2013) Thrips biology and management. Springer Science & Business Media, Heidelberg

    Google Scholar 

  • Pelikan Y (1951) On carnation thrips, Taeniothrips dianthi Pr. Entomol Listy 14:5–38

    Google Scholar 

  • Peneder S, Koschier EH (2011) Toxic and behavioural effects of carvacrol and thymol on F. occidentalis larvae. J Plant Dis Prot 118:26–30

    Article  CAS  Google Scholar 

  • Pergande T (1895) Observation on certain Thripidae. Insect Life Wash 7:390–395

    Google Scholar 

  • Pozzebon A, Boaria A, Duso C (2015) Single and combined releases of biological control agents against canopy- and soil-dwelling stage of Frankliniella occidentalis in cyclamen. BioControl 60:341–350

    Article  CAS  Google Scholar 

  • Rachana RR, Varatharajan R (2018) New reports of thrips (Thysanoptera: Terebrantia: Thripidae) from India. J Threat Taxa 10:12226–12229

    Article  Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2008) Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycol Res 112:1362–1372

    Article  PubMed  Google Scholar 

  • Reitz SR (2009) Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): the making of a pest. Fla Entomol 92:7–13

    Article  Google Scholar 

  • Reitz SR, Yearby EL, Funderburk JE et al (2003) Integrated management tactics for Frankliniella thrips (Thysanoptera: Thripidae) in field-grown pepper. J Econ Entomol 96:1201–1214

    Article  PubMed  Google Scholar 

  • Riley D, Sparks JA, Srinivasan R et al (2018) Thrips: biology, ecology, and management. In: Wakil W, Brust GE, Perring TM (eds) Sustainable management of arthropod pests of tomato. Academic, New York, pp 49–71

    Chapter  Google Scholar 

  • Riley DG, Joseph SV, Srinivasan R et al (2011a) Thrips vectors of tospoviruses. J Integr Pest Manag 2:I1–I10

    Article  Google Scholar 

  • Riley DG, Joseph SV, Kelly WT et al (2011b) Host plant resistance to tomato spotted wilt virus (Bunyaviridae: Tospovirus) in tomato. Hortic Sci 46:1626–1633

    Google Scholar 

  • Rotenberg D, Jacobson AL, Schneweis DJ et al (2015) Thrips transmission of tospovirus. Curr Opin Virol 15:80–89

    Article  PubMed  Google Scholar 

  • Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: implications for biological control. Biocontrol Sci Tech 10:737–752

    Article  Google Scholar 

  • Sakimura K (1962) Frankliniella occidentalis (Thysanoptera: Thripidae), a vector of the Tomato Spotted Wilt Virus, with special reference to the color forms. Ann Entomol Soc Am 55:387–389

    Article  Google Scholar 

  • Sakimura K, Nakahara LM, Denmark WA (1986) A thrips, T. palmi. Entomology Circular, Division of Plant Industry, Florida Department of Agriculture and Consumer Services

    Google Scholar 

  • Sampson C, Kirk WD (2013) Can mass trapping reduce thrips damage and is it economically viable? Management of the western flower thrips in strawberry. PLoS ONE 8:e80787

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiedy M, Tork M, Deyhim F (2015) Effect of the entomopathogenic fungus Beauveria bassiana on the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) as a non-target organism. Syst Appl Acarol 20:241–251

    Google Scholar 

  • Sites RW, Chambers WS (1990) Initiation of vernal activity of Frankliniella occidentalis and Thrips tabaci on the Texas south plains. Southwest Entomol 15:339–343

    Google Scholar 

  • Skinner M, Gouli S, Frank CE (2012) Management of Frankliniella occidentalis (Thysanoptera: Thripidae) with granular formulations of entomopathogenic fungi. Biol Control 63:246–252

    Article  Google Scholar 

  • Speyer ER (1932) Entomological investigations: Thrips fuscipennis Hal. 17th Annu Rep exp Res St Nursery Mkt Cheshunt Herts, pp 49–55

    Google Scholar 

  • Speyer ER (1936) Rose thrips (Thrips fuscipennis). 22nd Annu. Rep Exp Res Stn, pp 64–66

    Google Scholar 

  • Srivastava M, Funderburk J, Demirozer O et al (2014) Impacts on natural enemies and competitor thrips of insecticides against Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in fruiting vegetables. Fla Entomol 97:337–348

    Article  Google Scholar 

  • Stacey DA, Fellowes MDE (2002) Temperature and the development rates of thrips: evidence for a constraint on local adaptation? Eur J Entomol 99:399–404

    Article  Google Scholar 

  • Stafford-Banks CA, Rotenberg D, Johnson BR et al (2014) Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PLoS ONE 9:e94447

    Article  PubMed  PubMed Central  Google Scholar 

  • Steenbergen M, Abd-el-Haliem A, Bleeker P et al (2018) Thrips advisor: exploiting thrips-induced defences to combat pests on crops. J Exp Bot 69:1837–1848

    Article  PubMed  Google Scholar 

  • Steiner MY, Spohr LJ, Goodwin S (2011) Relative humidity controls pupation success and dropping behaviour of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Aust J Entomol 50:179–186

    Article  Google Scholar 

  • Sugiyama K, Ohishi N, Saito T (2014) Preliminary evaluation of greenhouse positive-pressure forced ventilation to prevent invasion by insect pests. Appl Entomol Zool 49:553–559

    Article  Google Scholar 

  • Sureshkumar N, Ananthakrishnan TN (1984) Predator-thrips interactions with references to Orius maxidentex Ghauri and Carayonocoris indicus Muraleedharan. Proc Indian Natl Sci Acad Part B 50:139–145

    Google Scholar 

  • Sureshkumar N, Ananthakrishnan TN (1985) Geocoris ochropterus Fabr. as a predator of some thrips. Proc Indian Natl Sci Acad 30:39–45

    Google Scholar 

  • Tang LD, Yan KL, Fu BL et al (2015) The life table parameters of Megalurothrips usitatus (Thysanoptera: Thripidae) on four leguminous crops. Fla Entomol:620–625

    Google Scholar 

  • Tang LD, Zhao HY, Fu BL et al (2016) Colored sticky traps to selectively survey thrips in cowpea ecosystem. Neotrop Entomol 45:96–101

    Article  CAS  PubMed  Google Scholar 

  • Teulon DA, Castane C, Nielsen MC et al (2014) Evaluation of new volatile compounds as lures for western flower thrips and onion thrips in New Zealand and Spain. NZ Plant Prot 67:175–183

    Google Scholar 

  • Teulon DA, Davidson MM, Perry NB et al (2011) Recent developments with methyl isonicotinate, a semiochemical used in thrips pest management. NZ Plant Prot 64:287

    Google Scholar 

  • Thaler JS (1999) Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Environ Entomol 28:30–37

    Article  CAS  Google Scholar 

  • Thoen MP, Kloth KJ, Wiegers GL et al (2016) Automated video tracking of thrips behavior to assess host-plant resistance in multiple parallel two-choice setups. Plant Methods 12:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas JC, Wasmann CC, Echt C et al (1994) Introduction and expression of an insect proteinase inhibitor in alfalfa Medicago sativa L. Plant Cell Rep 14:31–36

    Article  CAS  PubMed  Google Scholar 

  • Thungrabeab M, Blaeser P, Sengonca C (2006) Possibilities for biocontrol of the onion thrips Thrips tabaci Lindeman (Thys., Thripidae) using different entomopathogenic fungi from Thailand. Mitt Dtsch Ges Allg Angew Entomol 15:299–304

    Google Scholar 

  • Thungrabeab M, Tongma S (2007) Effect of entomopathogenic fungi, Beauveria bassiana (Balsam) and Metarhizium anisopliae (Metsch) on non target insects. Curr Appl Sci Technol 7:8–12

    Google Scholar 

  • Titschack E (1960) Thysanoptera, XXII. Liothrips vaneeckei déprédateur des bulbes de lys. Bombus 2:77–78

    Google Scholar 

  • Tommasini MG, Maini S (1995) Frankliniella occidentalis and other thrips harmful to vegetable and ornamental crops in Europe. Wageningen Agric Univ Papers 95:1–42

    Google Scholar 

  • Tsao R, Marvin CH, Broadbent AB et al (2005) Evidence for an isobutylamide associated with host-plant resistance to western flower thrips, Frankliniella occidentalis, in chrysanthemum. J Chem Ecol 31:103–110

    Article  CAS  PubMed  Google Scholar 

  • Tyagi K, Kumar V (2016) Thrips (Insecta: Thysanoptera) of India – an updated checklist. Halteres 7:64–98

    Google Scholar 

  • Ugine TA, Wraight SP, Sanderson JP (2007) Effects of manipulating spray application parameters on efficacy of the entomopathogenic fungus Beauveria bassiana against western flower thrips, Frankliniella occidentalis, infesting greenhouse Impatiens crops. Biocontrol Sci Tech 17:193–219

    Article  Google Scholar 

  • Ullman DE, German TL, Sherwood JL et al (1995) Thrips transmission of tospoviruses: future possibilities for management. In: Thrips Biology and management. Springer, Boston, pp 135–151

    Chapter  Google Scholar 

  • Varadarasan S, Ananthakrishnan TN (1981) Population dynamics and prey-predator/parasite relationships of gall-forming thrips. Proc Indian Natl Acad B 47:321–340

    Google Scholar 

  • Vierbergen G (1995) International movement, detection and quarantine of Thysanoptera pests. In: Thrips Biology and management. Springer, Boston, pp 119–132

    Google Scholar 

  • Viswanathan TR, Ananthakrishnan TN (1974) Population fluctuation of three species of anthophilous Thysanoptera in relation the numerical response of their predator, Orius minutes L (Anthocoridae Heteroptera). Curr Sci 43:19–20

    Google Scholar 

  • Wang J, Tong X, Wu D (2014) The effect of latitudinal gradient on the species diversity of Chinese litter-dwelling thrips. ZooKeys 417:9–20

    Article  Google Scholar 

  • Weintraub PG, Pivonia S, Steinberg S (2011) How many Orius laevigatus are needed for effective western flower thrips, Frankliniella occidentalis, management in sweet pepper? Crop Prot 30:1443–1448

    Article  Google Scholar 

  • Whitten MM, Facey PD, Del Sol R et al (2016) Symbiont-mediated RNA interference in insects. Proc R Soc Lond B 283:20160042

    Google Scholar 

  • Wu S, Gao Y, Xu X et al (2013) Laboratory and greenhouse evaluation of a new entomopathogenic strain of Beauveria bassiana for control of the onion thrips Thrips tabaci. Biocontrol Sci Tech 23:794–802

    Article  Google Scholar 

  • Wu S, Gao Y, Xu X et al (2014) Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers. Biocontrol Sci Tech 10:1110–1121

    Article  Google Scholar 

  • Ying SH, Feng MG (2006) Medium components and culture conditions affect the thermotolerance of aerial conidia of fungal biocontrol agent Beauveria bassiana. Lett Appl Microbiol 43:331–335

    Article  CAS  PubMed  Google Scholar 

  • Zawirska I (1976) Untersuchungen über zwei biologische Typen von Thrips tabaci Lind. (Thysanoptera: Thripidae) in der VR Polen. Arch Phytopathol Pflanzensch 12:411–422

    Article  Google Scholar 

  • Zeier P, Wright MG (1995) Thrips resistance in Gladiolus spp.: potential for IPM and breeding. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, p 411

    Chapter  Google Scholar 

  • Zhang T, Reitz SR, Wang H et al (2015) Sublethal effects of Beauveria bassiana (Ascomycota: Hypocreales) on life table parameters of Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 108:975–985

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Higher Education, Government of Uttar Pradesh, India, for providing financial assistance in the form of Center of Excellence in Biocontrol of Insect Pests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, B., Omkar (2021). Thrips. In: Omkar (eds) Polyphagous Pests of Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-8075-8_9

Download citation

Publish with us

Policies and ethics