Skip to main content

Overview of Uremic Toxins

  • Chapter
  • First Online:
Uremic Toxins and Organ Failure
  • 268 Accesses

Abstract

This chapter focuses on the overview of uremic toxins. More than 100 uremic toxins have been reported to be retained in uremic serum. Uremic toxins include small water-soluble compounds (molecular weight <500 Da), protein-bound compounds (mostly molecular weight <500 Da), and middle molecules (molecular weight ≧500 Da). Hemodialysis with a high-flux membrane can efficiently remove not only the small water-soluble compounds but also the middle molecules. However, hemodialysis even with a high-flux membrane cannot efficiently remove the protein-bound compounds because of their high albumin-binding property. The retention of the protein-bound compounds in the blood of uremic patients might play an important role in the development of uremic complications such as cardiovascular disease, bone disease, and sarcopenia. Mass spectrometry has been successfully applied to identify and quantify the uremic toxins in the uremic blood and tissues, and have enabled the identification of novel uremic toxins, and elucidated their role in the uremic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niwa T. Mass spectrometry in the search for uremic toxins. Mass Spectrom Rev. 1997;16:307–32.

    Article  CAS  PubMed  Google Scholar 

  2. Niwa T. Update of uremic toxin research by mass spectrometry. Mass Spectrom Rev. 2011;3:510–21.

    Article  CAS  Google Scholar 

  3. Niwa T. Analysis of uremic toxins with mass spectrometry. In: Niwa T, editor. Uremic toxins. Hoboken, NJ: Wiley; 2012. p. 35–50.

    Chapter  Google Scholar 

  4. Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–43.

    Article  CAS  PubMed  Google Scholar 

  5. Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23:1258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, Vanholder R, Brunet P. Protein-bound toxins-update 2009. Semin Dial. 2009;22:334–9.

    Article  PubMed  Google Scholar 

  7. Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins (Basel). 2018;10:E33.

    Article  CAS  Google Scholar 

  8. Perna AF, Glorieux G, Zacchia M, Trepiccione F, Capolongo G, Vigorito C, et al. The role of the intestinal microbiota in uremic solute accumulation: a focus on sulfur compounds. J Nephrol. 2019;32:733–40.

    Article  CAS  PubMed  Google Scholar 

  9. Sumida K, Kovesdy CP. The gut-kidney-heart axis in chronic kidney disease. Physiol Int. 2019;106:195–206.

    Article  CAS  PubMed  Google Scholar 

  10. Lauri K, Arund J, Holmar J, Tanner R, Kalle S, Luman M, et al. Removal of urea, ß2-microglobulin, and indoxyl sulfate assessed by absorbance and fluorescence in the spent dialysate during hemodialysis. ASAIO J. 2020;66:698–705.

    Google Scholar 

  11. Lau WL, Vaziri ND. Urea, a true uremic toxin: the empire strikes back. Clin Sci (Lond). 2017;131:3–12.

    Article  CAS  Google Scholar 

  12. Hu L, Tian K, Zhang T, Fan CH, Zhou P, Zeng D, et al. Cyanate induces oxidative stress injury and abnormal lipid metabolism in liver through Nrf2/HO-1. Molecules. 2019;24:E3231.

    Article  PubMed  CAS  Google Scholar 

  13. Lopes RCSO, Balbino KP, Jorge MP, Ribeiro AQ, Martino HSD, Alfenas RCG. Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: a systematic review. Nutr Hosp. 2018;35:722–30.

    PubMed  Google Scholar 

  14. Vanholder R, Glorieux G, Eloot S. Once upon a time in dialysis: the last days of Kt/V? Kidney Int. 2015;88:460–5.

    Article  CAS  PubMed  Google Scholar 

  15. Eloot S, Van Biesen W, Glorieux G, Neirynck N, Dhondt A, Vanholder R. Does the adequacy parameter Kt/V(urea) reflect uremic toxin concentrations in hemodialysis patients? PLoS One. 2013;8:e76838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schepers E, Barreto DV, Liabeuf S, Glorieux G, Eloot S, Barreto FC, et al. Symmetric dimethylarginine as a proinflammatory agent in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:2374–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kielstein JT, Fliser D, Veldink H. Asymmetric dimethylarginine and symmetric dimethylarginine: axis of evil or useful alliance? Semin Dial. 2009;22:346–50.

    Article  PubMed  Google Scholar 

  18. Shafi T, Hostetter TH, Meyer TW, Hwang S, Hai X, Melamed ML, et al. Serum asymmetric and symmetric dimethylarginine and morbidity and mortality in hemodialysis patients. Am J Kidney Dis. 2017;70:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bugnicourt JM, Da Silveira C, Bengrine A, Godefroy O, Baumbach G, Sevestre H, et al. Chronic renal failure alters endothelial function in cerebral circulation in mice. Am J Physiol Heart Circ Physiol. 2011;301:H1143–52.

    Article  CAS  PubMed  Google Scholar 

  20. Adelibieke Y, Shimizu H, Muteliefu G, Bolati D, Niwa T. Indoxyl sulfate induces endothelial cell senescence by increasing reactive oxygen species production and p53 activity. J Ren Nutr. 2012;22:86–9.

    Article  CAS  PubMed  Google Scholar 

  21. Minakuchi H, Wakino S, Hosoya K, Sueyasu K, Hasegawa K, Shinozuka K, et al. The role of adipose tissue asymmetric dimethylarginine/dimethylarginine dimethylaminohydrolase pathway in adipose tissue phenotype and metabolic abnormalities in subtotally nephrectomized rats. Nephrol Dial Transplant. 2016;31:413–23.

    Article  CAS  PubMed  Google Scholar 

  22. Hosoya K, Minakuchi H, Wakino S, Fujimura K, Hasegawa K, Komatsu M, et al. Insulin resistance in chronic kidney disease is ameliorated by spironolactone in rats and humans. Kidney Int. 2015;87:749–60.

    Article  CAS  PubMed  Google Scholar 

  23. Boelaert J, Schepers E, Glorieux G, Eloot S, Vanholder R, Lynen F. Determination of asymmetric and symmetric dimethylarginine in serum from patients with chronic kidney disease: UPLC-MS/MS versus ELISA. Toxins (Basel). 2016;8:E149.

    Article  CAS  Google Scholar 

  24. Moraes C, Fouque D, Amaral AC, Mafra D. Trimethylamine N-oxide from gut microbiota in chronic kidney disease patients: focus on diet. J Ren Nutr. 2015;25:459–65.

    Article  CAS  PubMed  Google Scholar 

  25. Hur E, Gungor O, Bozkurt D, Bozgul S, Dusunur F, Caliskan H, et al. Trimethylaminuria (fish malodour syndrome) in chronic renal failure. Hippokratia. 2012;16:83–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mair RD, Sirich TL, Meyer TW. Uremic toxin clearance and cardiovascular toxicities. Toxins (Basel). 2018;10:E226.

    Article  CAS  Google Scholar 

  27. Pelletier CC, Croyal M, Ene L, Aguesse A, Billon-Crossouard S, Krempf M, et al. Elevation of trimethylamine-N-oxide in chronic kidney disease: contribution of decreased glomerular filtration rate. Toxins (Basel). 2019;11(11):E635.

    Article  CAS  Google Scholar 

  28. Prokopienko AJ, West RE 3rd, Schrum DP, Stubbs JR, Leblond FA, Pichette V, et al. Metabolic activation of flavin monooxygenase-mediated trimethylamine-N-oxide formation in experimental kidney disease. Sci Rep. 2019;9:15901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. El-Deeb OS, Atef MM, Hafez YM. The interplay between microbiota-dependent metabolite trimethylamine N-oxide, Transforming growth factor β/SMAD signaling and inflammasome activation in chronic kidney disease patients: a new mechanistic perspective. J Cell Biochem. 2019;120:14476–85.

    Article  CAS  PubMed  Google Scholar 

  30. Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins (Basel). 2016;8:E326.

    Article  CAS  Google Scholar 

  31. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanemitsu Y, Asaji K, Matsumoto Y, Tsukamoto H, Saigusa D, Mukawa C, et al. Simultaneous quantitative analysis of uremic toxins by LC-MS/MS with a reversed-phase/cation-exchange/anion-exchange tri-modal mixed-mode column. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1068–1069:1–8.

    Article  CAS  Google Scholar 

  33. Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017;92:634–45.

    Article  CAS  PubMed  Google Scholar 

  34. Nanto-Hara F, Kanemitsu Y, Fukuda S, Kikuchi K, Asaji K, Saigusa D, et al. The guanylate cyclase C agonist linaclotide ameliorates the gut-cardio-renal axis in an adenine-induced mouse model of chronic kidney disease. Nephrol Dial Transplant. 2020;35:250–64.

    CAS  PubMed  Google Scholar 

  35. Hill E, Sapa H, Negrea L, Bame K, Hostetter T, Barkoukis H, et al. Effect of oat β-glucan supplementation on chronic kidney disease: a feasibility study. J Ren Nutr. 2019;pii: S1051-2276(19)30270-5.

    Google Scholar 

  36. Sirich TL, Aronov PA, Plummer NS, Hostetter TH, Meyer TW. Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney Int. 2013;84:585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aronov PA, Luo FJ, Plummer NS, Quan Z, Holmes S, Hostetter TH, et al. Colonic contribution to uremic solutes. J Am Soc Nephrol. 2011;22:1769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meyer TW, Hostetter TH. Uremic solutes from colon microbes. Kidney Int. 2012;81:949–54.

    Article  CAS  PubMed  Google Scholar 

  39. Miyazaki T, Ise M, Seo H, Niwa T. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Int Suppl. 1997;62:S15–22.

    CAS  PubMed  Google Scholar 

  40. Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med. 1994;124:96–104.

    CAS  PubMed  Google Scholar 

  41. Opdebeeck B, D’Haese PC, Verhulst A. Molecular and cellular mechanisms that induce arterial calcification by indoxyl sulfate and p-cresyl sulfate. Toxins (Basel). 2020;12:E58.

    Article  CAS  Google Scholar 

  42. Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr. 2010;20(Suppl 1):S2–6.

    Article  CAS  PubMed  Google Scholar 

  43. Niwa T. Uremic toxicity of indoxyl sulfate. Nagoya J Med Sci. 2010;72(1–2):1–11.

    CAS  PubMed  Google Scholar 

  44. Iwasaki Y, Yamato H, Nii-Kono T, Fujieda A, Uchida M, Hosokawa A, et al. Uremic toxin and bone metabolism. J Bone Miner Metab. 2006;24:172–5.

    Article  CAS  PubMed  Google Scholar 

  45. Enoki Y, Watanabe H, Arake R, Sugimoto R, Imafuku T, Tominaga Y, et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep. 2016;6:32084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sato E, Mori T, Mishima E, Suzuki A, Sugawara S, Kurasawa N, et al. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in CKD. Sci Rep. 2016;6:36618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Adijiang A, Goto S, Uramoto S, Nishijima F, Niwa T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transplant. 2008;23:1892–901.

    Article  CAS  PubMed  Google Scholar 

  48. Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal Bioanal Chem. 2012;403:1841–50.

    Article  CAS  PubMed  Google Scholar 

  49. Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T. Correlation between serum levels of protein-bound uremic toxins in hemodialysis patients measured by LC/MS/MS. Mass Spectrom (Tokyo). 2013;2(Spec Iss):S0017.

    Google Scholar 

  50. Fan PC, Chang JC, Lin CN, Lee CC, Chen YT, Chu PH, et al. Serum indoxyl sulfate predicts adverse cardiovascular events in patients with chronic kidney disease. J Formos Med Assoc. 2019;118:1099–106.

    Article  PubMed  Google Scholar 

  51. Lin YT, Wu PH, Liang SS, Mubanga M, Yang YH, Hsu YL, et al. Protein-bound uremic toxins are associated with cognitive function among patients undergoing maintenance hemodialysis. Sci Rep. 2019;9:20388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yamamoto S, Kazama JJ, Omori K, Matsuo K, Takahashi Y, Kawamura K, et al. Continuous reduction of protein-bound uraemic toxins with improved oxidative stress by using the oral charcoal adsorbent AST-120 in haemodialysis patients. Sci Rep. 2015;5:14381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sato E, Saigusa D, Mishima E, Uchida T, Miura D, Morikawa-Ichinose T, et al. Impact of the oral adsorbent AST-120 on organ-specific accumulation of uremic toxins: LC-MS/MS and MS imaging techniques. Toxins (Basel). 2017;10:E19.

    Article  CAS  Google Scholar 

  54. Li Y, Su X, Zhang L, Liu Y, Shi M, Lv C, et al. Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case-controlled study. J Transl Med. 2019;17:228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lin CN, Wu IW, Huang YF, Peng SY, Huang YC, Ning HC. Measuring serum total and free indoxyl sulfate and p-cresyl sulfate in chronic kidney disease using UPLC-MS/MS. J Food Drug Anal. 2019;27:502–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi T, Matsumura Y, Ozawa T, Yanai H, Iwasawa A, Kamachi T, et al. Exploration of novel predictive markers in rat plasma of the early stages of chronic renal failure. Anal Bioanal Chem. 2014;406:1365–76.

    Article  CAS  PubMed  Google Scholar 

  57. Boelaert J, Lynen F, Glorieux G, Eloot S, Van Landschoot M, Waterloos MA, et al. A novel UPLC-MS-MS method for simultaneous determination of seven uremic retention toxins with cardiovascular relevance in chronic kidney disease patients. Anal Bioanal Chem. 2013;405:1937–47.

    Article  CAS  PubMed  Google Scholar 

  58. Mishima E, Fukuda S, Shima H, Hirayama A, Akiyama Y, Takeuchi Y, et al. Alteration of the Intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD. J Am Soc Nephrol. 2015;26:1787–94.

    Article  CAS  PubMed  Google Scholar 

  59. de Loor H, Bammens B, Evenepoel P, De Preter V, Verbeke K. Gas chromatographic-mass spectrometric analysis for measurement of p-cresol and its conjugated metabolites in uremic and normal serum. Clin Chem. 2005;51:1535–8.

    Article  PubMed  CAS  Google Scholar 

  60. Martinez AW, Recht NS, Hostetter TH, Meyer TW. Removal of P-cresol sulfate by hemodialysis. J Am Soc Nephrol. 2005;16:3430–6.

    Article  CAS  PubMed  Google Scholar 

  61. Meijers BK, De Loor H, Bammens B, Verbeke K, Vanrenterghem Y, Evenepoel P. p-Cresyl sulfate and indoxyl sulfate in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4:1932–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luo FJ, Patel KP, Marquez IO, Plummer NS, Hostetter TH, Meyer TW. Effect of increasing dialyzer mass transfer area coefficient and dialysate flow on clearance of protein-bound solutes: a pilot crossover trial. Am J Kidney Dis. 2009;53:1042–9.

    Article  CAS  PubMed  Google Scholar 

  63. Watanabe H, Miyamoto Y, Honda D, Tanaka H, Wu Q, Endo M, Noguchi T, et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013;83:582–92.

    Article  CAS  PubMed  Google Scholar 

  64. Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, Tsai CJ, et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26:938–47.

    Article  CAS  PubMed  Google Scholar 

  65. Watanabe H, Miyamoto Y, Enoki Y, Ishima Y, Kadowaki D, Kotani S, et al. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress. Pharmacol Res Perspect. 2015;3:e00092.

    PubMed  Google Scholar 

  66. Lai YH, Wang CH, Kuo CH, Lin YL, Tsai JP, Hsu BG. Serum p-cresyl sulfate is a predictor of central arterial stiffness in patients on maintenance hemodialysis. Toxins (Basel). 2019;12(1):E10.

    Article  CAS  Google Scholar 

  67. Tanaka H, Iwasaki Y, Yamato H, Mori Y, Komaba H, Watanabe H, et al. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone. 2013;56:347–54.

    Article  CAS  PubMed  Google Scholar 

  68. Sun CY, Chang SC, Wu MS. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int. 2012;81:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cosola C, De Angelis M, Rocchetti MT, Montemurno E, Maranzano V, Dalfino G, et al. Beta-glucans supplementation associates with reduction in p-cresyl sulfate levels and improved endothelial vascular reactivity in healthy individuals. PLoS One. 2017;12:e0169635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Luce M, Bouchara A, Pastural M, Granjon S, Szelag JC, Laville M, et al. Is 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) a clinically relevant uremic toxin in haemodialysis patients? Toxins (Basel). 2018;10:E205.

    Article  CAS  Google Scholar 

  71. Glass RL, Krick TP, Sand DM, Rahn CH, Schlenk H. Furanoid fatty acids from fish lipids. Lipids. 1975;10:695–702.

    Article  CAS  PubMed  Google Scholar 

  72. Hannemann K, Puchta V, Simon E, Ziegler H, Ziegler G, Spiteller G. The common occurrence of furan fatty acids in plants. Lipids. 1989;24:296–8.

    Article  CAS  PubMed  Google Scholar 

  73. Hanhineva K, Lankinen MA, Pedret A, Schwab U, Kolehmainen M, Paananen J, et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J Nutr. 2015;145:7–17.

    Article  CAS  PubMed  Google Scholar 

  74. Niwa T. Removal of protein-bound uraemic toxins by haemodialysis. Blood Purif. 2013;35(Suppl 2):20–5.

    Google Scholar 

  75. Miyamoto Y, Iwao Y, Mera K, Watanabe H, Kadowaki D, Ishima Y, et al. A uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropionate induces cell damage to proximal tubular cells via the generation of a radical intermediate. Biochem Pharmacol. 2012;84:1207–14.

    Article  CAS  PubMed  Google Scholar 

  76. Sassa T, Matsuno H, Niwa M, Kozawa O, Takeda N, Niwa T, et al. Measurement of furancarboxylic acid, a candidate for uremic toxin, in human serum, hair, and sweat, and analysis of pharmacological actions in vitro. Arch Toxicol. 2000;73:649–54.

    Article  CAS  PubMed  Google Scholar 

  77. Huang Y, Sun H, Frassetto L, Benet LZ, Lin ET. Liquid chromatographic tandem mass spectrometric assay for the uremic toxin 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid in human plasma. Rapid Commun Mass Spectrom. 2006;20:1611–4.

    Article  CAS  PubMed  Google Scholar 

  78. Koh ES, Lee K, Kim SH, Kim YO, Jin DC, Song HC, et al. Serum β2-microglobulin predicts mortality in peritoneal dialysis patients: a prospective cohort study. Am J Nephrol. 2015;42:91–8.

    Article  CAS  PubMed  Google Scholar 

  79. Liabeuf S, Lenglet A, Desjardins L, Neirynck N, Glorieux G, Lemke HD, et al. Plasma beta-2 microglobulin is associated with cardiovascular disease in uremic patients. Kidney Int. 2012;82:1297–303.

    Article  CAS  PubMed  Google Scholar 

  80. Andoh T, Maki T, Li S, Uta D. β2-Microglobulin elicits itch-related responses in mice through the direct activation of primary afferent neurons expressing transient receptor potential vanilloid 1. Eur J Pharmacol. 2017;810:134–40.

    Article  CAS  PubMed  Google Scholar 

  81. Yamamoto S. Molecular mechanisms underlying uremic toxin-related systemic disorders in chronic kidney disease: focused on β2-microglobulin-related amyloidosis and indoxyl sulfate-induced atherosclerosis-Oshima Award Address 2016. Clin Exp Nephrol. 2019;23:151–7.

    Article  CAS  PubMed  Google Scholar 

  82. Corlin DB, Heegaard NH. β2-microglobulin amyloidosis. Subcell Biochem. 2012;65:517–40.

    Article  CAS  PubMed  Google Scholar 

  83. Mironova R, Niwa T. Molecular heterogeneity of amyloid β2-microglobulin and modification with advanced glycation end products. J Chromatogr B. 2001;758:109–15.

    Article  CAS  Google Scholar 

  84. Bertoletti L, Regazzoni L, Altomare A, Colombo R, Colzani M, Vistoli G, et al. Advanced glycation end products of beta2-microglobulin in uremic patients as determined by high resolution mass spectrometry. J Pharm Biomed Anal. 2014;91:193–201.

    Article  CAS  PubMed  Google Scholar 

  85. Nakamoto H, Hamada C, Shimaoka T, Sekiguchi Y, Io H, Kaneko K, et al. Accumulation of advanced glycation end products and beta 2-microglobulin in fibrotic thickening of the peritoneum in long-term peritoneal dialysis patients. J Artif Organs. 2014;17:60–8.

    Article  CAS  PubMed  Google Scholar 

  86. Maduell F, Arias-Guillen M, Fontseré N, Ojeda R, Rico N, Vera M, et al. Elimination of large uremic toxins by a dialyzer specifically designed for high-volume convective therapies. Blood Purif. 2014;37:125–30.

    Article  CAS  PubMed  Google Scholar 

  87. Tsuchida K, Nagai K, Yokota N, Yamada S, Michiwaki H, Minakuchi J. Evidence for targeting low-molecular-weight proteins in hemodialysis and hemodiafiltration. Contrib Nephrol. 2017;189:189–96.

    Article  PubMed  Google Scholar 

  88. Susantitaphong P, Siribamrungwong M, Jaber BL. Convective therapies versus low-flux hemodialysis for chronic kidney failure: a meta-analysis of randomized controlled trials. Nephrol Dial Transplant. 2013;28:2859–74.

    Article  CAS  PubMed  Google Scholar 

  89. Susantitaphong P, Tiranathanagul K, Katavetin P, Hanwiwatwong O, Wittayalertpanya S, Praditpornsilpa K, et al. Efficacy comparison between simple mixed-dilution and simple mid-dilution on-line hemodiafiltration techniques: a crossover study. Artif Organs. 2012;36:1059–65.

    Article  CAS  PubMed  Google Scholar 

  90. Cordeiro ISF, Cordeiro L, Wagner CS, Araújo LKRP, Pereira BJ, Abensur H, et al. High-flux versus high-retention-onset membranes: in vivo small and middle molecules kinetics in convective dialysis modalities. Blood Purif. 2019:1–8.

    Google Scholar 

  91. Kuragano T, Kida A, Yahiro M, Nakanishi T. Clinical Benefit of an adsorptive technique for elderly long-term hemodialysis patients. Contrib Nephrol. 2019;198:94–102.

    Article  CAS  PubMed  Google Scholar 

  92. Massry SG, Smogorzewski M. Parathyroid hormone as a uremic toxin. In: Niwa T, editor. Uremic toxins. Hoboken: Wiley; 2012. p. 227–48.

    Chapter  Google Scholar 

  93. Sprague SM, Moe SM. The case for routine parathyroid hormone monitoring. Clin J Am Soc Nephrol. 2013;8:313–8.

    Article  CAS  PubMed  Google Scholar 

  94. Nikodimopoulou M, Liakos S. Secondary hyperparathyroidism and target organs in chronic kidney disease. Hippokratia. 2011;15(Suppl 1):33–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Avram MM, Mittman N, Myint MM, Fein P. Importance of low serum intact parathyroid hormone as a predictor of mortality in hemodialysis and peritoneal dialysis patients: 14 years of prospective observation. Am J Kidney Dis. 2001;38:1351–7.

    Article  CAS  PubMed  Google Scholar 

  96. Hou YC, Lu CL, Lu KC. Mineral bone disorders in chronic kidney disease. Nephrology (Carlton). 2018;23(Suppl 4):88–94.

    Article  CAS  Google Scholar 

  97. Tanaka M, Komaba H, Fukagawa M. Emerging association between parathyroid hormone and anemia in hemodialysis patients. Ther Apher Dial. 2018;22:242–5.

    Article  PubMed  Google Scholar 

  98. Ussawawongaraya W, Spilles N, Nilwarangkoon S, Jariyapongskul A. The correlation of parathyroid hormone and heart rate variability in CAPD patients. J Med Assoc Thail. 2013;96:595–602.

    Google Scholar 

  99. Esposito MG, Cesare CM, De Santo RM, Cice G, Perna AF, Violetti E, et al. Parathyroidectomy improves the quality of sleep in maintenance hemodialysis patients with severe hyperparathyroidism. J Nephrol. 2008;21(Suppl 13):S92–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimitsu Niwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niwa, T. (2020). Overview of Uremic Toxins. In: Saito, H., Abe, T. (eds) Uremic Toxins and Organ Failure. Springer, Singapore. https://doi.org/10.1007/978-981-15-7793-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7793-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7792-5

  • Online ISBN: 978-981-15-7793-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics