Skip to main content

Analyzing Thermal Stress Distribution in Metallic Components Using Digital Holography

  • Conference paper
  • First Online:
Progress in Optomechatronics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 249))

Abstract

In present work, thermal stress distribution of a structure made of dissimilar metals is studied and analyzed using digital holographic non-destructive testing (DHNDT) method. The test structure is a press fit assembly in which a circular disk of Aluminium is tightly fitted inside a ring of mild steel material. Digital holograms of the metal structure under test are recorded in its thermally loaded and unloaded states. Amplitude and phase distribution of thermal deformation resulted from temperature gradient and different coefficient of thermal expansion (CTE) of metals, are analyzed. Thermal stress distribution generated due to thermal deformation along the surface of metal structure is also discussed. These results could be utilized in analysing thermal stress distribution in several manufacturing applications like aviation and automobile industries where these types of metal and non-metal structures are common.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.K. Bansal, A Textbook of Strength of Materials, 4th edn. (Laxmi Publications, 2008)

    Google Scholar 

  2. R. Kumar, R. Singh, K. Pandya, A. Kumar, Effects of pressure gradients on laser beam propagation through an optical window for tokamak plasma diagnostics. Fusion Sci. Technol. 61(1), 51–56 (2012)

    Article  Google Scholar 

  3. Y.K. Zhu, G.Y. Tian, R.S. Lu, H. Zhang, A review of optical NDT technologies. Sensors 11(8), 7773–7798 (2011)

    Article  Google Scholar 

  4. D. Francis, R.P. Tatam, R.M. Groves, Shearography technology and applications: a review. Meas. Sci. Technol. 21(10), 102001 (2010)

    Article  ADS  Google Scholar 

  5. N. Andrés, J. Lobera, M.P. Arroyo, L.A. Angurel, Two-dimensional quantification of the corrosion process in metal surfaces using digital speckle pattern interferometry. Appl. Opt. 50(10), 1323–1328 (2011)

    Article  ADS  Google Scholar 

  6. L.O. Heflinger, R.F. Wuerker, R.E. Brooks, Holographic Interferometry. J. Appl. Phys. 37(2), 642–649 (1966)

    Article  ADS  Google Scholar 

  7. P. Hariharan, Optical Interferometry, 2nd edn. (Academic Press, Cambridge, 2003)

    Google Scholar 

  8. Y.Y. Hung, H.P. Ho, Shearography: an optical measurement technique and applications. Mater. Sci. Eng. R Rep. 49(3), 61–87 (2005)

    Article  Google Scholar 

  9. P. Ming Tsang, T. Poon, W. Osten, Digital holography for industrial applications. IEEE Trans. Ind. Inform. 12(4), 1560–1563 (2016)

    Article  Google Scholar 

  10. S. Wu, M. Dong, Y. Fang, L. Yang, Universal optical setup for phase-shifting and spatial-carrier digital speckle pattern interferometry. J. Eur. Opt. Soc. Publ. 12(1), 1–9 (2016)

    Article  Google Scholar 

  11. Y. Yu, J. Di, W. Qu, A. Asundi, Measurement of thermal effects of diode-pumped solid-state laser by using digital holography. Appl. Opt. 57(19), 5385–5391 (2018)

    Article  ADS  Google Scholar 

  12. P. Xia, S. Ri, Q. Wang, H. Tsuda, Nanometer-order thermal deformation measurement by a calibrated phase-shifting digital holography system. Opt. Express 26(10), 12594–12604 (2018)

    Article  ADS  Google Scholar 

  13. K. Kosma, M. Andrianakis, K. Hatzigiannakis, V. Tornari, Digital holographic interferometry for cultural heritage structural diagnostics: a coherent and a low-coherence optical set-up for the study of a marquetry sample. Strain 1–12 (2018)

    Google Scholar 

  14. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, Hoboken, 2006)

    Google Scholar 

  15. H. Xia, R. Guo, F. Yan, H. Cheng, Z. Lin, Q. Ma, F. Wang, Simultaneous measurement of stress-optic constant and stress field of transparent plate by digital holographic interferometry.  Optik 127(24), 11974–11981 (2016)

    Article  Google Scholar 

  16. F. Vincitorio, L. Bahuer, M.P. Fiorucci, A.J. López, A. Ramil, Improvement of crack detection on rough materials by digital holographic interferometry in combination with non-uniform thermal loads. Optik (Stuttgaert) 163, 43–48 (2018)

    Article  ADS  Google Scholar 

  17. U. Schnars, W. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)

    Article  ADS  Google Scholar 

  18. U. Schnars, W. Jüptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13(9), R85–R101 (2002)

    Article  ADS  Google Scholar 

  19. T.C. Poon, J.P. Liu, Introduction to Modern Digital Holography with MATLAB (Cambridge University Press, New York, 2014)

    Google Scholar 

  20. M.K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, New York, 2011)

    Book  Google Scholar 

  21. C. Liu, D. Wang, Y. Zhang, Comparison and verification of numerical reconstruction methods in digital holography. Opt. Eng. 48(10), 1–7 (2009)

    Google Scholar 

  22. G. Dwivedi, S.K. Debnath, B. Das, R. Kumar, Revisit to comparison of numerical reconstruction of digital holograms using angular spectrum method and Fresnel diffraction method. J. Opt. 49(1), 118-126 (2020)

    Google Scholar 

  23. J.W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2005)

    Google Scholar 

  24. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, G. Pierattini, Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. Opt. Lett. 29(8), 854 (2004)

    Article  ADS  Google Scholar 

  25. T.M. Kreis, M. Adams, W.P.O. Jueptner, Methods of digital holography: a comparison, in Optical Inspection Micromeasurements II, vol. 3098 (International Society for Optics and Photonics, 1997), pp. 224–233

    Google Scholar 

  26. T. Kreis, Application of digital holography for nondestructive testing and metrology: a review. IEEE Trans. Ind. Inform. 12(1), 240–247 (2016)

    Article  Google Scholar 

  27. S. Verma, S.S. Sarma, R. Dhar, Rajkumar, Scratch enhancement and measurement in periodic and non-periodic optical elements using digital holography. Optik (Stuttgart) 126(21), 3283–3287 (2015)

    Google Scholar 

  28. X. Peng, A. Asundi, Y. Chen, Z. Xiong, Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis. Appl. Opt. 40(9), 1396 (2001)

    Article  ADS  Google Scholar 

  29. K. Lingaiah, Machine Design Databook, 2nd edn. (McGraw-Hill, New York, 2003)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Mr. Omendra Singh of CSIR-CSIO for help in preparing the test sample. Authors also thank Department of Science and Technology, New Delhi, Government of India, for financial support for the work under HoloCam project (Grant No. DST/TSG/NTS/2015/59).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dwivedi, G., Kumar, R. (2020). Analyzing Thermal Stress Distribution in Metallic Components Using Digital Holography. In: Bhattacharya, I., Otani, Y., Lutz, P., Cherukulappurath, S. (eds) Progress in Optomechatronics. Springer Proceedings in Physics, vol 249. Springer, Singapore. https://doi.org/10.1007/978-981-15-6467-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6467-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6466-6

  • Online ISBN: 978-981-15-6467-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics