Skip to main content

Wheat Crop Modelling for Higher Production

  • Chapter
  • First Online:
Systems Modeling

Abstract

Due to quick growth of population, climate change and diminished natural resources, food security and nutrition issues face major challenges. Crop models successfully proved crop yield simulation under diverse environments, biotic constraints, gene factors and climate change impacts and adaptation. But, the accuracy of crop models for yield estimates needs to be improved with other limitation factors affecting yield growth and production to ensure global food security. These factors include short-term severe stresses (i.e. cold and heat), pest and diseases, soil dynamic changes due to climate changes, soil nutrient balance, grain quality (i.e. protein, iron and zinc) as well as the potential integration between genotype and phenotype in crop models. Here, we outlined the potential and limitation of wheat crop models to assist breeders, researchers, agronomists and decision-makers to address the current and future challenges linked with global food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam M, Ewert F, Leffelaar PA, Corbeels M, Keulen HV, Wery J (2010) CROSPAL, software that uses agronomic expert knowledge to assist modules selection for crop growth simulation. Environ Model Softw 25(8):946–955

    Google Scholar 

  • Aggarwal P, Banerjee B, Daryaei M, Bhatia A, Bala A, Rani S, Chander S, Pathak H, Kalra N (2006) InfoCrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. II. Performance of the model. Agric Syst 89(1):47–67

    Google Scholar 

  • Ahmad S, Abbas G, Fatima Z, Khan RJ, Anjum MA, Ahmed M, Khan MA, Porter CH, Hoogenboom G (2017) Quantification of the impacts of climate warming and crop management on canola phenology in Punjab, Pakistan. J Agron Crop Sci 203(5):442–452. https://doi.org/10.1111/jac.12206

    Article  Google Scholar 

  • Ahmad S, Abbas G, Ahmed M, Fatima Z, Anjum MA, Rasul G, Khan MA, Hoogenboom G (2019) Climate warming and management impact on the change of phenology of the rice-wheat cropping system in Punjab, Pakistan. Field Crop Res 230:46–61. https://doi.org/10.1016/j.fcr.2018.10.008

    Article  Google Scholar 

  • Ahmed M (2012) Improving soil fertility recommendations in Africa using the decision support system for Agrotechnology transfer (DSSAT); a book review. Exp Agric 48(4):602–603

    Google Scholar 

  • Ahmed M (2020) Introduction to modern climate change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Sci Total Environ 734:139397. https://doi.org/10.1016/j.scitotenv.2020.139397

  • Ahmed M, Ahmad S (2019) Carbon dioxide enrichment and crop productivity. In: Hasanuzzaman M (ed) Agronomic crops. Management practices, vol 2. Springer Singapore, Singapore, pp 31–46. https://doi.org/10.1007/978-981-32-9783-8_3

    Chapter  Google Scholar 

  • Ahmed M, Stockle CO (2016) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer Nature Singapore Pvt. Ltd., Singapore, 437 pp. https://doi.org/10.1007/978-3-319-32059-5

  • Ahmed M, Aslam MA, Hassan FU, Asif M, Hayat R (2014) Use of APSIM to model nitrogen use efficiency of rain-fed wheat. Int J Agric Biol 16:461–470

    CAS  Google Scholar 

  • Ahmed M, Hassan FU, Aslam MA, Akram MN, Akmal M (2011) Regression model for the study of sole and cumulative effect of temperature and solar radiation on wheat yield. Afr J Biotechnol 10(45):9114–9121. https://doi.org/10.5897/AJB11.1318

    Article  Google Scholar 

  • Ahmed M, Asif M, Hirani AH, Akram MN, Goyal A (2013) Modeling for agricultural sustainability: a review. In: Bhullar GS, Bhullar NK (eds) Agricultural sustainability progress and prospects in crop research. Elsevier, London

    Google Scholar 

  • Ahmed M, Akram MN, Asim M, Aslam M, Hassan F-u, Higgins S, Stöckle CO, Hoogenboom G (2016) Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: models evaluation and application. Comput Electron Agric 123:384–401. https://doi.org/10.1016/j.compag.2016.03.015

    Article  Google Scholar 

  • Ahmed M, Stöckle CO, Nelson R, Higgins S (2017) Assessment of climate change and atmospheric CO2 impact on winter wheat in the Pacific Northwest using a multimodel ensemble. Front Ecol Evol 5(51). https://doi.org/10.3389/fevo.2017.00051

  • Ahmed M, Ijaz W, Ahmad S (2018) Adapting and evaluating APSIM-SoilP-Wheat model for response to phosphorus under rainfed conditions of Pakistan. J Plant Nutr 41(16):2069–2084. https://doi.org/10.1080/01904167.2018.1485933

    Article  CAS  Google Scholar 

  • Ahmed M, Stöckle CO, Nelson R, Higgins S, Ahmad S, Raza MA (2019) Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci Rep 9(1):7813. https://doi.org/10.1038/s41598-019-44251-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed K, Shabbir G, Ahmed M, Shah KN (2020) Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci Total Environ 729:139082. https://doi.org/10.1016/j.scitotenv.2020.139082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andarzian B, Hoogenboom G, Bannayan M, Shirali M, Andarzian B (2015) Determining optimum sowing date of wheat using CSM-CERES-Wheat model. J Saudi Soc Agric Sci 14(2):189–199

    Google Scholar 

  • Angulo C, Rötter R, Lock R, Enders A, Fronzek S, Ewert F (2013) Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agric For Meteorol 170:32–46

    Google Scholar 

  • Aslam MA, Ahmed M, Stöckle CO, Higgins SS, Hassan FU, Hayat R (2017a) Can growing degree days and photoperiod predict spring wheat phenology? Front Environ Sci 5:57

    Google Scholar 

  • Aslam MU, Shehzad A, Ahmed M, Iqbal M, Asim M, Aslam M (2017b) QTL modelling: an adaptation option in spring wheat for drought stress. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer International Publishing, Cham, pp 113–136. https://doi.org/10.1007/978-3-319-32059-5_6

    Chapter  Google Scholar 

  • Asseng S, Keating BA, Fillery IRP, Gregory PJ, Bowden JW, Turner NC, Palta JA, Abrecht DG (1998) Performance of the APSIM-wheat in Western Australia. Field Crop Res 57:163–179

    Google Scholar 

  • Asseng S, van Keulen H, Stol W (2000) Performance and application of the APSIM Nwheat model in the Netherlands. Eur J Agron 12:37–54

    Google Scholar 

  • Asseng S, Jamieson PD, Kimball B, Pinter P, Sayre K, Bowden JW, Howden SM (2004) Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crop Res 85:85–102

    Google Scholar 

  • Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Chang Biol 17(2):997–1012

    Google Scholar 

  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rötter RP, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR, Wolf J (2013a) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3:827–832

    CAS  Google Scholar 

  • Asseng S, Travasso MI, Ludwig F, Magrin GO (2013b) Has climate change opened new opportunities for wheat cropping in Argentina? Clim Chang 117(1–2):181–196

    Google Scholar 

  • Asseng S, Zhu Y, Basso B, Wilson T, Cammarano D (2014) Simulation modeling: applications in cropping systems. In: Van Alfen NK (ed) Encyclopedia of agriculture and food systems. Academic, Oxford, pp 102–112

    Google Scholar 

  • Asseng S, Ewert F, Martre P, Rotter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, GarciaVile M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Muller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Rezaei EE, Ruane AC, Semenov MA, Shcherbak I, Stockle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf I, Zhao Z, Zhu Y (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Google Scholar 

  • Asseng S, Kheir AMS, Kassie BT, Hoogenboom G, Anbdelaal AIN, Haman DZ, Ruane AC (2018) Can Egypt become self-sufficient in wheat? Environ Res Lett 13:094012

    Google Scholar 

  • Asseng S, Martre P, Maiorano A, Rötter RP, O’Leary GJ, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP, Kheir AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Rezaei EE, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum K, Klein C, Koehler A, Liu B, Minoli S, San Martin MM, Müller C, Kumar SN, Nendel C, Olesen JE, Palosuo T, Porter JR, Priesack E, Ripoche D, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert F (2019) Climate change impact and adaptation for wheat protein. Glob Chang Biol 25:155–173. https://doi.org/10.1111/gcb.14481

  • Basso B, Ritchie JT, Grace PR, Sartori L (2006) Simulation of tillage systems impact on soil biophysical properties using the SALUS model Italian. J Agron 4:677–688

    Google Scholar 

  • Basso B, Cammarano D, Troccoli A, Chen D, Ritchie J (2010) Long-term wheat response to nitrogen in a rainfed Mediterranean environment: field data and simulation analysis. Eur J Agron 33:182–188

    Google Scholar 

  • Basso B, Cammarano D, Fiorentino C, Ritchie JT (2013) Wheat yield response to spatially variable nitrogen fertilizer in Mediterranean environment. Eur J Agron 51:65–70

    CAS  Google Scholar 

  • Basso B, Liu L, Ritchie JT (2016) A comprehensive review of the CERES-Wheat, −maize and -Rice models’ performances. Adv Agron 136:27–132

    Google Scholar 

  • Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Glob Change Biol Bioenergy 3:299–312

    CAS  Google Scholar 

  • Berntsen J, Petersen B, Jacobsen B, Olesen J, Hutchings N (2003) Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agric Syst 76:817–839

    Google Scholar 

  • Biernath C, Gayler S, Bittner S, Klein C, Hogy P, Fangmeier A, Priesack E (2011) Evaluating the ability of four crop models to predict different environmental impacts on spring wheat grown in open-top chambers. Eur J Agron 35:71–82

    Google Scholar 

  • Boogaard H, Kroes J (1998) Leaching of nitrogen and phosphorus from rural areas to surface waters in the Netherlands. Nutr Cycl Agroecosyst 50:321–324

    CAS  Google Scholar 

  • Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet JM, Meynard JM, Delecolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. theory and parameterization applied to wheat and corn. Agronomie 18:311–346

    Google Scholar 

  • Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussiere F, Cabidoche YM, Cellier P, Debaeke P, Gaudillere JP, Henault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18:309–332

    Google Scholar 

  • Challinor A, Wheeler T, Craufurd P, Slingo J, Grimes D (2004) Design and optimisation of a large area process based model for annual crops. Agric For Meteorol 124:99–120

    Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291

    Google Scholar 

  • Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer MF, Chapman SC (2011) Environment characterization as an aid to wheat improvement: interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia. J Exp Bot 62(6):1743–1755. https://doi.org/10.1093/jxb/erq1459

    Article  CAS  PubMed  Google Scholar 

  • Chenu K, Deihimfard R, Chapman SC (2013) Large-scale characterization of drought pattern: a continent-wide modelling approach applied to the Australian wheatbelt – spatial and temporal trends. New Phytol 198(3):801–820

    PubMed  Google Scholar 

  • Chenu K, Porter JR, Martre P, Basso B, Chapman SC, Ewert F, Bindi M, Asseng S (2017) Contribution of crop models to adaptation in wheat. Trends Plant Sci 22(6). https://doi.org/10.1016/j.tplants

  • de Wit CT (1995) Photosynthesis of leaf canopies, Agricultural research report 663. Centre for Agricultural Publications and Documentation, Wageningen

    Google Scholar 

  • Dumont B, Basso B, Bodson B, Destain JP, Destain MF (2015) Climatic risk assessment to improve nitrogen fertilisation recommendations: a strategic crop model-based approach. Eur J Agron 65:10–17

    Google Scholar 

  • Ewert F, Porter JR (2000) Ozone effects on wheat in relation to CO2: modeling short-term and long-term responses of leaf photosynthesis and leaf duration. Glob Chang Biol 6:735–750

    Google Scholar 

  • Ewert F, van Ittersum MK, Bezlepkina I, Therond O, Andersen E, Belhouchette H, Bockstaller C, Brouwer F, Heckelei T, Janssen S, Knapen R, Kuiper M, Louhichi K, Olsson JA, Turpin N, Wery J, Wien JE, Wolf J (2009) A methodology for enhanced flexibility of integrated assessment in agriculture. Environ Sci Pol 12:546–561

    Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  PubMed  Google Scholar 

  • Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:85–98

    Google Scholar 

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance – hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270

    CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenges of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Godfray HCJ, Pretty J, Thomas SM, Warham JR, Beddington JR (2011) Linking policy on climate and food. Science 331:1013–1014

    CAS  PubMed  Google Scholar 

  • Gourdji SM, Mathews KL, Reynolds M, Crossa J, Lobell DB (2013) An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc R Soc B Biol Sci 280:1–8

    Google Scholar 

  • Grant RF, Garcia RL, Pinter JPJ, Hunsaker D, Wall GW, Kimball BA, Lamorte RL (1995) Interaction between atmospheric CO2 concentration and water deficit on gas exchange and crop growth: testing of ecosys with data from the Free Air CO2 Enrichment (FACE) experiment. Glob Chang Biol 1(6):443–454

    Google Scholar 

  • Groot JJR, Verberne ELJ (1991) Response of wheat to nitrogen fertilization, a data set to validate simulation models for nitrogen dynamics in crop and soil. Fertil Res 27:349–383

    CAS  Google Scholar 

  • Guarin JR, Asseng S (2017) Wheat crop modelling to improve yields. https://doi.org/10.19103/AS.2016.0004.27

  • Hansen S, Jensen H, Nielsen N, Svendsen H (1991) Simulation of nitrogen dynamics and biomass production in winter-wheat using the Danish simulation model DAISY. Fertil Res 27:245–259

    CAS  Google Scholar 

  • Hansen S, Abrahamsen P, Petersen CT, Styczen M (2012) DAISY: model use, calibration, and validation. Trans ASABE 55:1317–1335

    Google Scholar 

  • Hasegawa H, Denison RF (2005) Model predictions of winter rainfall effects on N dynamics of winter wheat rotation following legume cover crop or fallow. Field Crop Res 91(2–3):251–261

    Google Scholar 

  • He J, Stratonovitch P, Allard V, Semenov MA, Martre P (2010) Global sensitivity analysis of the process-based wheat simulation model siriusquality1 identifies key genotypic parameters and unravels parameters interactions. Procedia Soc Behav Sci 2:7676–7677

    Google Scholar 

  • Hertel TW, Lobell DB (2014) Agricultural adaptation to climate change in rich and poor countries: current modeling practice and potential for empirical contributions. Energy Econ 46:562–575

    Google Scholar 

  • Hochman Z, Gobbett D, Holzworth D, Mcclelland T, Van Rees H, Marinoni O, Garcia JN, Horan H (2013) Quantifying yield gaps in rainfed cropping systems: a case study of wheat in Australia. Field Crop Res 143:65–75

    Google Scholar 

  • Holzworth DP, Huth NI, Devoil PG, Zurcher EJ, Herrmann NI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JPM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang EL, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM –evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62:327–350

    Google Scholar 

  • Hoogenboom G, White JW (2003) Improving physiological assumptions of simulation models by using gene-based approaches. Agron J 95:92–90

    Google Scholar 

  • Hunt JR, Kirkegaard JA (2011) Re-evaluating the contribution of summer fallow rain to wheat yield in Southern Australia. Crop Pasture Sci 62:915–929

    Google Scholar 

  • Hunt LA, Pararajasingham S (1995) CROPSIM-wheat- a model describing the growth and development of wheat. Can J Plant Sci 75:619–632

    Google Scholar 

  • Huth NI, Thorburn PJ, Radford BJ, Thornton CM (2010) Impacts of fertilisers and legumes on N2O and CO2 emissions from soils in subtropical agricultural systems: a simulation study. Agric Ecosyst Environ 136(3–4):351–357

    CAS  Google Scholar 

  • IPCC (2014) Climate change. 2014 synthesis report. IPCC, Geneva

    Google Scholar 

  • Jabeen M, Gabriel HF, Ahmed M, Mahboob MA, Iqbal J (2017) Studying impact of climate change on wheat yield by using DSSAT and GIS: a case study of Pothwar region. In: Ahmed M, Stockle CO (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer International Publishing, Cham, pp 387–411. https://doi.org/10.1007/978-3-319-32059-5_16

    Chapter  Google Scholar 

  • Jamieson PD, Martin RJ, Francis GS (1995) Drought influences on grain yield of barley, wheat, and maize. N Z J Crop Hortic Sci 23(1):55–66

    Google Scholar 

  • Jamieson PD, Porter JR, Goudriaan J, Ritchie JT, Keulen HV, Stol W (1998) A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crop Res 55(1–2):23–44

    Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265

    Google Scholar 

  • Kartschall T, Grossman S, Pinter PJ, Garcia RL, Kimball BA, Wall GW, Hunsaker DJ, LaMORT RL (1995) A simulation of phenology, growth, carbon dioxide exchange and yields under ambient atmosphere and Free-Air Carbon Dioxide Enrichment (FACE) Maricopa, Arizona, for wheat. J Biogeogr 22(4/5):611–622

    Google Scholar 

  • Kassie BT, Asseng S, Porter CH, Royce FS (2016) Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. Eur J Agron 81:27–36

    Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288

    Google Scholar 

  • Kersebaum K (2007) Modelling nitrogen dynamics in soil-crop systems with HERMES. Nutr Cycl Agroecosyst 77:39–52

    Google Scholar 

  • Kersebaum K (2011) Special features of the HERMES model and additional procedures for parameterization, calibration, validation, and applications. In: Ahuja LR, Ma L (eds) Methods of introducing system models into agricultural research, Advances in agricultural systems modeling series 2. ASA-CSSA-SSSA, Madison, pp 65–94

    Google Scholar 

  • Kersebaum KC, Boote KJ, Jorgenson JS, Nendel C, Bindi M, Fruhauf C, Gaiser T, Hoogenboom G, Kollas C, Olesen JE, Rotter RP, Ruget F, Thorburn PJ, Trnka M, Wegehenkel M (2015) Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environ Model Softw 72:402–417

    Google Scholar 

  • Kheir AMS, El Baroudy A, Aiad MA, Zoghdan MG, Abd El-Aziz MA, Ali MGM, Fullen MA (2019) Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta. Sci Total Environ 651:3161–3173

    CAS  PubMed  Google Scholar 

  • Kimball B, Kobayashi B, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Google Scholar 

  • Kiniry JR, Major DJ, Izaurralde RC, Williams JR, Gassman PW, Morrison M, Bergentine R, Zentner RP (1995) EPIC model parameters for cereal, oilseed, and forage crops in the northern great plains region. Can J Plant Sci 75:679–688

    Google Scholar 

  • Kirkegaard JA, Hunt JR (2010) Increasing productivity by matching farming system management and genotype in water-limited environments. J Exp Bot 61(15):4129–4143

    CAS  PubMed  Google Scholar 

  • Ko J, Ahuja L, KIMBALL BA, Anapalli S, Ma L, Green TR, Ruane AC, WALL GW, PINTER JPJ, Bader DA (2010) Simulation of free air CO2 enriched wheat growth and interactions with water, nitrogen, and temperature. Agric For Meteorol 150(10):1331–1346

    Google Scholar 

  • Latta J, O’Leary G (2003) Long-term comparison of rotation and fallow tillage systems of wheat in Australia. Field Crop Res 83:173–190

    Google Scholar 

  • Li S, Wheeler T, Challinor A, Lin E, Xu Y, Ju H (2010) Simulating the impacts of global warming on wheat in China using a large area crop model. Acta Meteor Sin 24:123–135

    Google Scholar 

  • Liu J, Wiberg D, Zehnder AJB, Yang H (2007) Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrig Sci 26(1):21–33

    Google Scholar 

  • Liu B, Martre P, Ewert F, Porter JR, Challinor AJ, Müller C, Ruane AC, Waha K, Thorburn PJ, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Montesino San Martin M, Naresh Kumar S, Nendel C, O’Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Asseng S (2019) Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Glob Chang Biol 25(4):1428–1444. https://doi.org/10.1111/gcb.14542

    Article  Google Scholar 

  • Lobell DB, Hammer GL, Chenu K, Zheng B, McLean G, Chapman SC (2015) The shifting influence of drought and heat stress for crops in Northeast Australia. Glob Chang Biol 21(11):4115–4127

    PubMed  Google Scholar 

  • Loomis RS, Rabbinge R, Ng E (1979) Explanatory models in crop physiology. Annu Rev Plant Physiol Plant Mol Biol 30:339–367

    Google Scholar 

  • Lv ZF, Liu XJ, Cao WX, Zhu Y (2013) Climate change impacts on regional winter wheat production in main wheat production regions of China. Agric For Meteorol 171:234–248

    Google Scholar 

  • Majoul-Haddad T, Bancel E, Triboi E, Branlard G, Martre P (2013) Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome. J Cereal Sci 57(3):486–495

    CAS  Google Scholar 

  • Martín MM, Olesen JE, Porter JR (2014) A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark. Agric For Meteorol 187:1–13

    Google Scholar 

  • Mollah M, Norton R, Huzzey J (2009) Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance. Crop Pasture Sci 60(8):697–707. https://doi.org/10.1071/CP08354

    Article  CAS  Google Scholar 

  • Nendel C, Berg M, Kersebaum K, Mirschel W, Specka X, Wegehenkel M, Wenkel K, Wieland R (2011) The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecol Model 222:1614–1625

    CAS  Google Scholar 

  • Nuttall JG, O’Leary GJ, Khimashia N, Asseng S, Fitzgerald G, Norton R (2012) ‘Haying-off’ in wheat is predicted to increase under a future climate in South-Eastern Australia. Crop Pasture Sci 63(7):593–605. https://doi.org/10.1071/CP12062

    Article  Google Scholar 

  • Nuttall JG, O’Leary GJ, Panozzo JF, Walker CK, Barlow KM, Fitzgerad GJ (2017) Models of grain quality in wheat—a review. Field Crop Res 202:136–145

    Google Scholar 

  • O’Leary GJ, Connor DJ, White DH (1985) A simulation-model of the development, growth and yield of the wheat crop. Agric Syst 17:1–26

    Google Scholar 

  • O’Leary GJ, Christy B, Nuttall J, Huth N, Cammarano D, Stöckle C, Basso B, Shcherbak L, Fitzgerald G, Luo Q, Farre-Codina I, Palta J, Asseng S (2015) Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 enrichment (FACE) experiment and modelling in a semi-arid environment. Glob Chang Biol 21:2670–2686

    PubMed  PubMed Central  Google Scholar 

  • Olesen JE, Jensen T, Petersen J (2000) Sensitivity of field-scale winter wheat production in Denmark to climate variability and climate change. Clim Res 15:221–238

    Google Scholar 

  • Olesen J, Petersen B, Berntsen J, Hansen S, Jamieson P, Thomsen A (2002) Comparison of methods for simulating effects of nitrogen on green area index and dry matter growth in winter wheat. Field Crop Res 74:131–149

    Google Scholar 

  • Ottman MJ, Kimball BA, White JW, Wall GW (2012) Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron J 104:7–16

    Google Scholar 

  • Pan J, Zhu Y, Cao W (2007) Modeling plant carbon flow and grain starch accumulation in wheat. Field Crop Res 101:276–284

    Google Scholar 

  • Paydar Z, Gallant J (2007) A catchment framework for one-dimensional models: introducing FLUSH and its application. Hydrol Process 22(13):2094–2104

    Google Scholar 

  • Porter JR (1984) A model of canopy development in winter wheat. J Agric Sci 102:383–392

    Google Scholar 

  • Porter JR (1993) AFRCWHEAT2: a model of the growth and development of wheat incorporating responses to water and nitrogen. Eur J Agron 2:69–82

    Google Scholar 

  • Ritchie JT, Godwin DC, Otter-Nacke S (1985) CERES-wheat. A simulation model of wheat growth and development. Texas A&M University Press, College Station

    Google Scholar 

  • Ritchie S, Nguyen H, Holaday A (1987) Genetic diversity in photosynthesis and water use efficiency of wheat and wheat relatives. J Cell Biochem 11 (Supplement B):43–43

    Google Scholar 

  • Robertson MJ, Rebetzke GJ, Norton RM (2015) Assessing the place and role of crop simulation modelling in Australia. Crop Pasture Sci 66(9):877–893

    Google Scholar 

  • Rodriguez D, deVoil P, Power B, Cox H, Crimp S, Meinke H (2011) The intrinsic plasticity of farm businesses and their resilience to change. An Australian example. Field Crop Res 124(2):157–170

    Google Scholar 

  • Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138

    Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014a) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS 111(9):3268–3273

    CAS  PubMed  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Muller C, Arneth A, Boote KJ, Folberth C, Yang H, Jones J, W. (2014b) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS 111:3268–3273

    CAS  PubMed  Google Scholar 

  • Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep 1:5

    Google Scholar 

  • Senthilkumar S, Basso B, Kravchenko AN, Robertson GP (2009) Contemporary evidence of soil carbon loss in the US corn belt. Soil Sci Soc Am J 73:2078–2086

    CAS  Google Scholar 

  • Shibu M, Leffelaar P, van Keulen H, Aggarwal P (2010) LINTUL3, a simulation model for nitrogen-limited situations: application to rice. Eur J Agron 32:255–271

    CAS  Google Scholar 

  • Soltani A, Maddah V, Sinclair R (2013) SSM-Wheat: a simulation model for wheat development, growth and yield. Int J Plant Prod 7:711–740

    Google Scholar 

  • Spitters CJT, Schapendonk AHCM (1990) Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant Soil 123:193–203

    Google Scholar 

  • Steduto P, Hsiao T, Raes D, Fereres E (2009) Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agron J 101:426–437

    Google Scholar 

  • Stenger R, Priesack E, Barkle G, Sperr C (1999) Espert-N A tool for simulating nitrogen and carbon dynamics in the soil-plant-atmosphere system. In: Tomer M, Robinson M, Gieleng G (eds) NZ land treatment collective proceedings technical session 20: modeling of land treatment systems. New Plymouth, New Zealand, pp 19–28

    Google Scholar 

  • Stockle C, Donatelli M, Nelso R (2003a) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307

    Google Scholar 

  • Stockle C, Donatelli M, Nelson R (2003b) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307

    Google Scholar 

  • Stöckle CO, Kemanian AR (2020) Can crop models identify critical gaps in genetics, environment, and management interactions? Front Plant Sci 11:737. https://doi.org/10.3389/fpls.2020.00737

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao F, Zhang Z (2013) Climate change, wheat productivity and water use in the North China plain: a new super-ensemble-based probabilistic projection. Agric For Meteorol 170:146–165

    Google Scholar 

  • Tao F, Zhang Z, Liu J, Yokozawa M (2009) Modelling the impacts of weather and climate variability on crop productivity over a large area: a new super-ensemble-based probabilistic projection. Agric For Meteorol 149:1266–1278

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    CAS  PubMed  Google Scholar 

  • Tubiello FN, Rosenzweig C, Kimball BA, Pinter PJ, Wall GW, Hunsaker DJ, LaMorte RL, Garcia RL (1999) Testing CERES-wheat with Free-Air Carbon Dioxide Enrichment (FACE) experiment data: CO2 and water interactions. Agron J 91:247–255

    Google Scholar 

  • van Bussel LGJ, Stehfest E, Siebert S, Müller C, Ewert F (2015) Simulation of the phenological development of wheat and maize at the global scale. Glob Ecol Biogeogr 24(9):1018–1029

    Google Scholar 

  • Vanuytrecht E, Raes D, Stedduto P, Hsiao T, Heng LK, Vila MG, Moreno PM (2014) AquaCrop: FAO’s crop water productivity and yield response model. Environ Model Softw 62:351–360

    Google Scholar 

  • Wall GW, Kimball BA, White J, Ottman MJ (2011) Gas exchange and water relations of spring wheat under full-season infrared warming. Glob Chang Biol 17:2113–2133

    Google Scholar 

  • Wallach D, Martre P, Liu B, Asseng S, Ewert F, Thorburn PJ, van Ittersum M, Aggarwal PK, Ahmed M, Basso B, Biernath C, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Fitzgerald GJ, Gao Y, Garcia-Vila M, Gayler S, Girousse C, Hoogenboom G, Horan H, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Müller C, Naresh Kumar S, Nendel C, O'Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Wolf J, Zhang Z (2018) Multimodel ensembles improve predictions of crop–environment–management interactions. Glob Chang Biol 24(11):5072–5083. https://doi.org/10.1111/gcb.14411

    Article  PubMed  Google Scholar 

  • Wang E, Engel T (2002) Simulation of growth, water and nitrogen uptake of a wheat crop using the SPASS model. Environ Model Softw 17(4):387–402

    Google Scholar 

  • Wang E, Robertson MJ, Hammer GL, Carberry PS, Holzworth D, Meinke H, Chapman SC, Hargreaves JNG, Huth NI, McLean G (2002) Development of a generic crop model template in the cropping system model APSIM. Eur J Agron 18:121–140

    Google Scholar 

  • Williams JR, Jones CA, Kiniry JR, Spanel DA (1989) The EPIC crop growth-model. Trans ASABE 32:497–511

    Google Scholar 

  • Wing IS, De Cian E (2014) Modelling agricultural adaptation. Nat Clim Chang 4:535–536

    Google Scholar 

  • Wong MTF, Asseng S (2006) Determining the causes of spatial and temporal variability of wheat yields at sub-field scale using a new method of upscaling a crop model. Plant Soil 283(1–2):203–215

    CAS  Google Scholar 

  • Zhao G, Hoffmann H, van Bussel LGJ, Enders A, Specka X, Sosa C, Yeluripati J, Tao F, Constantin J, Raynal H, Teixeira E, Grosz B, Doro L, Zhao Z, Nendel C, Kiese R, Eckersten H, Haas E, Vanuytrecht E, Wang E, Kuhnert M, Trombi G, Moriondo M, Bindi M, Lewan E, Bach M, Kersebaum K, Rötter R, Roggero PP, Wallach D, Cammarano D, Asseng S, Krauss G, Siebert S, Gaiser T, Ewert F (2015) Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Clim Res 65:141–157. https://doi.org/10.3354/cr01301

    Article  Google Scholar 

  • Zheng B, Chenu K, Chapman SC (2016) Velocity of temperature and flowering time in wheat – assisting breeders to keep pace with climate change. Glob Chang Biol 22(2):921–933

    PubMed  Google Scholar 

  • Ziska LH, Bunce JA (2007) Predicting the impact of changing CO2 on crop yields: some thoughts on food. New Phytol 175:607–618

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kheir, A.M.S., Ding, Z., Ali, M.G.M., Feike, T., Abdelaal, A.I.N., Elnashar, A. (2020). Wheat Crop Modelling for Higher Production. In: Ahmed, M. (eds) Systems Modeling. Springer, Singapore. https://doi.org/10.1007/978-981-15-4728-7_6

Download citation

Publish with us

Policies and ethics