Skip to main content

Reigning Technologies and Their Challenges for Antibiotics Removal

  • Chapter
  • First Online:
Contaminants in Drinking and Wastewater Sources

Abstract

There has been an increase in demand for antibiotics due to the rapid growth of population. Antibiotics have been extensively and efficiently used in human, veterinary medicines, and several other purposes. Their potential benefits were recognized to increase the production of agriculture, animal husbandry, and aquaculture and to promote the growth of livestock. This increasing demand for antibiotics leads to their presence in the environment as contaminants, and hence, it results as a major source of contaminant. The long-term persistence of antibiotics residues in the environment cause severe effects on the various environmental components like human life, aquatic life, flora and fauna, the ecology of the compartment, etc. Hence, the removal of antibiotics contaminants is very important. There is a different method which can be used to remove antibiotics contaminants from water, like conventional and advanced treatment, sorption techniques, membrane processes, and ecological processes like constructed wetlands, integrated constructed wetland, etc. But there are major challenges in the removal of antibiotics contaminants from water because they are highly polar and have very low concentration, their no standard permissible limits defined by any organization in the world (as per the author review). This review gives an overview of antibiotics removal technologies and associated challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acero JL, Benitez FJ, Teva F, Leal AI (2010) Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chem Eng J 163(3):264–272

    Article  CAS  Google Scholar 

  • Ahmed MJ, Theydan SK (2014) Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. J Taiwan Inst Chem Eng 45(1):219–226

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Rajapaksha AU, Vithanage M, Zhang M, Cho JS, Lee SE, Ok YS (2013) Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Biores Technol 143:615–622

    Article  CAS  Google Scholar 

  • Ahamad T, Chaudhary AA, Naushad M, Alshehri SM (2019) Fabrication of MnFe2O4 nanoparticles embedded chitosan-diphenylureaformaldehyde resin for the removal of tetracycline from aqueous solution. Int J Biol Macromol 134:180–188

    Google Scholar 

  • Aksu Z, Tunç Ö (2005) Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochem 40(2):831–847

    Article  CAS  Google Scholar 

  • Alsager OA, Alnajrani MN, Abuelizz HA, Aldaghmani IA (2018) Removal of antibiotics from water and waste milk by ozonation: kinetics, byproducts, and antimicrobial activity. Ecotoxicol Environ Saf 158:114–122

    Article  CAS  Google Scholar 

  • Andreozzi R, Canterino M, Giudice RL, Marotta R, Pinto G, Pollio A (2006) Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Res 40(3):630–638

    Google Scholar 

  • Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B (2017) A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 137:113–120

    Article  CAS  Google Scholar 

  • Balarak D, Mostafapour FK, Azarpira H (2016) Adsorption kinetics and equilibrium of ciprofloxacin from aqueous solutions using Corylus avellana (Hazelnut) activated carbon. J Pharmaceutical Res Int 1–14

    Google Scholar 

  • Balcıoğlu IA, Ötker M (2003) Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere, 50(1):85–95

    Google Scholar 

  • Batt AL, Aga DS (2005) Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Anal Chem 77(9):2940–2947

    Article  CAS  Google Scholar 

  • Belhouchet N, Hamdi B, Chenchouni H, Bessekhouad Y (2019) Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites. J Photochem Photobiol A 372:196–205

    Article  CAS  Google Scholar 

  • Ben W, Qiang Z, Pan X, Chen M (2009) Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton’s reagent. Water Res 43(17):4392–4402

    Article  CAS  Google Scholar 

  • Ben W, Qiang Z, Pan X, Nie Y (2011) Degradation of veterinary antibiotics by ozone in swine wastewater pretreated with sequencing batch reactor. J Environ Eng 138(3):272–277

    Article  Google Scholar 

  • Berglund B, Khan GA, Weisner SE, Ehde PM, Fick J, Lindgren PE (2014) Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. Sci Total Environ 476:29–37

    Article  Google Scholar 

  • Cao M, Wang P, Ao Y, Wang C, Hou J, Qian J (2016) Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: graphene oxide/magnetite/cerium-doped titania. J Colloid Interface Sci 467:129–139

    Article  CAS  Google Scholar 

  • Chen C, Li J, Chen P, Ding R, Zhang P, Li X (2014) Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environ Pollut 193:94–101

    Google Scholar 

  • Chen Y, Lan T, Duan L, Wang F, Zhao B, Zhang S, Wei W (2015) Adsorptive removal and adsorption kinetics of fluoroquinolone by nano-hydroxyapatite. PLoS ONE 10(12):e0145025

    Article  Google Scholar 

  • Chen T, Luo L, Deng S, Shi G, Zhang S, Zhang Y, Deng O, Wang L, Zhang J, Wei L (2018) Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Biores Technol 267:431–437

    Article  CAS  Google Scholar 

  • Chen YY, Ma YL, Yang J, Wang LQ, Lv JM, Ren CJ (2017) Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway. Chem Eng J 307:15–23

    Article  CAS  Google Scholar 

  • Chen F, Yang Q, Sun J, Yao F, Wang S, Wang Y, Wang X, Li X, Niu C, Wang D, Zeng G (2016a) Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism. ACS Appl Mater Interfaces 8(48):32887–32900

    Article  CAS  Google Scholar 

  • Chen J, Wei XD, Liu YS, Ying GG, Liu SS, He LY, Su HC, Hu LX, Chen FR, Yang YQ (2016b) Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. Sci Total Environ 565:240–248

    Article  CAS  Google Scholar 

  • Chen J, Ying GG, Wei XD, Liu YS, Liu SS, Hu LX, He LY, Chen ZF, Chen FR, Yang YQ (2016c) Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: effect of flow configuration and plant species. Sci Total Environ 571:974–982

    Article  CAS  Google Scholar 

  • Ćurković L, Ašperger D, Babić S, Župan J (2019) Adsorption of enrofloxacin onto natural zeolite: Kinetics, thermodynamics, isotherms and error analysis. Indian J Chem Technol (IJCT) 25(6):565–571

    Google Scholar 

  • Cizmas L, Sharma VK, Gray CM, McDonald TJ (2015) Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 13(4):381–394

    Google Scholar 

  • Das R (2014) Application Photocatalysis for treatment of industrial waste water—a short

    Google Scholar 

  • Das N, Patel AK, Deka G, Das A, Sarma KP, Kumar M (2015) Geochemical controls and future perspective of arsenic mobilization for sustainable groundwater management: A study from Northeast India. Groundwater Sustain Dev 1(1–2):92–104

    Article  Google Scholar 

  • de Oliveira Carvalho C, Rodrigues DLC, Lima ÉC, Umpierres CS, Chaguezac DFC, Machado FM (2019) Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana). Environ Sci Pollut Res 26(5):4690–4702

    Article  Google Scholar 

  • Dimitrakopoulou D, Rethemiotaki I, Frontistis Z, Xekoukoulotakis NP, Venieri D, Mantzavinos D (2012) Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J Environ Manage 98:168–174

    Article  CAS  Google Scholar 

  • Diwan V, Tamhankar AJ, Khandal RK, Sen S, Aggarwal M, Marothi Y, Iyer RV, Sundblad-Tonderski K, Stålsby-Lundborg C (2010) Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Publ Health 10(1):414

    Article  Google Scholar 

  • Diwan V, Tamhankar AJ, Aggarwal M, Sen S, Khandal RK, Lundborg CS (2009) Detection of antibiotics in hospital effluents in India. Curr Sci 1752–1755

    Google Scholar 

  • Dong H, Yuan X, Wang W, Qiang Z (2016) Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: a field study. J Environ Manage 178:11–19

    Article  CAS  Google Scholar 

  • Elmolla ES, Chaudhuri M (2010a) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252(1–3):46–52

    Article  CAS  Google Scholar 

  • Elmolla ES, Chaudhuri M (2010b) Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater 173(1–3):445–449

    Article  CAS  Google Scholar 

  • Estevinho BN, Martins I, Ratola N, Alves A, Santos L (2007) Removal of 2, 4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant. J Hazard Mater 143(1–2):535–540

    Article  CAS  Google Scholar 

  • Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546

    Article  CAS  Google Scholar 

  • Giraldo AL, Penuela GA, Torres-Palma RA, Pino NJ, Palominos RA, Mansilla HD (2010) Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res 44(18):5158–5167

    Article  CAS  Google Scholar 

  • Goel S, Kurwadkar S, Zhang XJ, Ramirez D, Forrest LM (2015) Antibiotics in the environment: a review. In: Emerging micro-pollutants in the environment: occurrence, fate, and distribution. American Chemical Society, Washington, DC, USA, pp 19–42

    Google Scholar 

  • Gogoi A, Mazumder P, Tyagi VK, Chaminda GT, An AK, Kumar M (2018) Occurrence and fate of emerging contaminants in water environment: a review. Groundwater Sustain Dev 6:169–180

    Article  Google Scholar 

  • Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. Clean–Soil Air Water 43(4):479–489

    Google Scholar 

  • Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices–a review. J Environ Manage 92(10):2304–2347

    Article  CAS  Google Scholar 

  • Hu Y, Zhang T, Jiang L, Luo Y, Yao S, Zhang D, Lin K, Cui C (2019) Occurrence and reduction of antibiotic resistance genes in conventional and advanced drinking water treatment processes. Sci Total Environ 669:777–784

    Google Scholar 

  • Iakovides IC, Michael-Kordatou I, Moreira NFF, Ribeiro AR, Fernandes T, Pereira MFR, Nunes OC, Manaia CM, Silva AMT, Fatta-Kassinos D (2019) Continuous ozonation of urban wastewater: removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Res 159:333–347

    Article  CAS  Google Scholar 

  • Ingerslev F, Halling-Sørensen B (2000) Biodegradability properties of sulfonamides in activated sludge. Environ Toxicol Chem Int J 19(10):2467–2473

    Article  CAS  Google Scholar 

  • Jang HM, Yoo S, Choi YK, Park S, Kan E (2018a) Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Biores Technol 259:24–31

    Article  CAS  Google Scholar 

  • Jang HM, Yoo S, Park S, Kan E, Jang HM, Yoo S, Park S, Kan E (2018b) Engineered biochar from pine wood: characterization and potential application for removal of sulfamethoxazole in water. Environ Eng Res 24(4):608–617

    Article  Google Scholar 

  • Kakavandi B, Bahari N, Kalantary RR, Fard ED (2019) Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@ T) coupled with US and UV: A new hybrid system. Ultrasonics Sonochemistry

    Google Scholar 

  • Kang J, Zhou L, Duan X, Sun H, Wang S (2018) Catalytic degradation of antibiotics by metal-free catalysis over nitrogen-doped graphene. Catalysis Today

    Google Scholar 

  • Karthikeyan KG, Meyer MT (2006) Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ 361(1–3):196–207

    Article  CAS  Google Scholar 

  • Keen OS, Linden KG (2013) Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent. Environ Sci Technol 47(22):13020–13030

    Article  CAS  Google Scholar 

  • Kirst H (2001) Antibiotics, macrolides. Kirk‐Othmer Encyclopedia of Chemical Technology

    Google Scholar 

  • Knight RL, Payne VW Jr, Borer RE, Clarke RA Jr, Pries JH (2000) Constructed wetlands for livestock wastewater management. Ecol Eng 15(1–2):41–55

    Article  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, (1999–2000): a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  • Kolpin DW, Skopec M, Meyer MT, Furlong ET, Zaugg SD (2004) Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Sci Total Environ 328(1–3):119–130

    Article  CAS  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153(2):315–322

    Google Scholar 

  • Kumar M, Das A, Das N, Goswami R, Singh UK (2016) Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, Northeastern India. Chemosphere 150:227–238

    Article  CAS  Google Scholar 

  • Kumar M, Furumai H, Kurisu F, Kasuga I (2010) Evaluating the mobile heavy metal pool in soakaway sediment, road dust and soil through sequential extraction and isotopic exchange. Water Sci Technol 62(4):920–928

    Article  CAS  Google Scholar 

  • Kumar M, Chaminda T, Honda R, Furumai H (2019a) Vulnerability of urban waters to emerging contaminants in India and Sri Lanka: Resilience framework and strategy. APN Sci Bull 9(1)

    Google Scholar 

  • Kumar M, Ram B, Honda R, Poopipattana C, Canh VD, Chaminda T, Furumai H (2019b) Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: urban vulnerability and resilience perspective. Sci Total Environ 133640

    Google Scholar 

  • Kümmerer K (2009a) Antibiotics in the aquatic environment–a review–part I. Chemosphere 75(4):417–434

    Article  Google Scholar 

  • Kümmerer K (2009b) Antibiotics in the aquatic environment–a review–part II. Chemosphere 75(4):435–441

    Article  Google Scholar 

  • Larsson DJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148(3):751–755

    Article  CAS  Google Scholar 

  • Leung HW, Minh TB, Murphy MB, Lam JC, So MK, Martin M, Lam PK, Richardson BJ (2012) Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ Int 42:1–9

    Article  CAS  Google Scholar 

  • Li G, Ben W, Ye H, Zhang D, Qiang Z (2018) Performance of ozonation and biological activated carbon in eliminating sulfonamides and sulfonamide-resistant bacteria: a pilot-scale study. Chem Eng J 341:327–334

    Article  CAS  Google Scholar 

  • Li Y, Bi E, Chen H (2019) Effects of dissolved humic acid on fluoroquinolones sorption and retention to kaolinite. Ecotoxicol Environ Saf 178:43–50

    Article  CAS  Google Scholar 

  • Li D, Yang M, Hu J, Zhang Y, Chang H, Jin F (2008) Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res 42(1–2):307–317

    Article  CAS  Google Scholar 

  • Liu MK, Liu YY, Bao DD, Zhu G, Yang GH, Geng JF, Li HT (2017) Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Sci Rep 7:43717

    Article  Google Scholar 

  • Liu P, Zhang H, Feng Y, Shen C, Yang F (2015) Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater. J Hazard Mater 296:248–255

    Article  CAS  Google Scholar 

  • Mahmood AR, Al-Haideri HH, Hassan FM (2019) Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq. Adv Public Health

    Google Scholar 

  • Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DA, Bandoch GF, Asefa T, Visentainer JV, Almeida VC (2015) Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem Eng J 260:291–299

    Article  CAS  Google Scholar 

  • Mohapatra S, Huang CH, Mukherji S, Padhye LP (2016) Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere 159:526–535

    Article  CAS  Google Scholar 

  • Mutiyar PK, Mittal AK (2013) Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: a case study of emerging pollutant. Desalination Water Treatment 51(31–33):6158–6164

    Article  CAS  Google Scholar 

  • Mutiyar PK, Mittal AK (2014) Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges. Environ Sci Pollut Res 21(12):7723–7736

    Article  CAS  Google Scholar 

  • Ötker HM, Akmehmet-Balcıoğlu I (2005) Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J Hazard Mater 122(3):251–258

    Article  Google Scholar 

  • Pouretedal HR, Sadegh N (2014) Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J Water Process Eng 1:64–73

    Article  Google Scholar 

  • Prabhasankar VP, Joshua DI, Balakrishna K, Siddiqui IF, Taniyasu S, Yamashita N, Kannan K, Akiba M, Praveenkumarreddy Y, Guruge KS (2016) Removal rates of antibiotics in four sewage treatment plants in South India. Environ Sci Pollut Res 23(9):8679–8685

    Google Scholar 

  • Premarathna KSD, Rajapaksha AU, Sarkar B, Kwon EE, Bhatnagar A, Ok YS, Vithanage M (2019) Biochar-based engineered composites for sorptive decontamination of water: a review. Chem Eng J 372:536–550

    Article  CAS  Google Scholar 

  • Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res 43(9):2419–2430

    Article  CAS  Google Scholar 

  • Qiang Z, Adams C (2004) Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res 38(12):2874–2890

    Google Scholar 

  • Rigos G, Nengas I, Alexis M, Troisi GM (2004) Potential drug (oxytetracycline and oxolinic acid) pollution from Mediterranean sparid fish farms. Aquat Toxicol 69(3):281–288

    Google Scholar 

  • Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J Chromatography A 938(1–2):199–210

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759

    Article  CAS  Google Scholar 

  • Shao L, Wu Z, Zeng L, Chen ZM, Zhou Y, Chen GQ (2013) Embodied energy assessment for ecological wastewater treatment by a constructed wetland. Ecol Model 252:63–71

    Google Scholar 

  • Singh A, Patel AK, Kumar M (2020) Mitigating the risk of Arsenic and Fluoride contamination of groundwater through a multi-model framework of statistical assessment and natural remediation techniques. In: Kumar M, Snow D, Honda R (eds) Emerging issues in the water environment during Anthropocene: a South East Asian perspective, Springer Nature. ISBN 978-93-81891-41-4

    Google Scholar 

  • Singh A, Patel AK, Deka JP, Das A, Kumar A, Kumar M (2019) Prediction of Arsenic vulnerable zones in groundwater environment of rapidly urbanizing setup, Guwahati, India. Geochemistry 125590. https://doi.org/10.1016/j.chemer.2019.125590

  • Southgate R, Osborne NF (2000) Carbapenems and penems. Kirk‐Othmer Encyclopedia of Chemical Technology

    Google Scholar 

  • Tao CW, Hsu BM, Ji WT, Hsu TK, Kao PM, Hsu CP, Shen SM, Shen TY, Wan TJ, Huang YL (2014) Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Sci Total Environ 496:116–121

    Google Scholar 

  • Underwood JC, Harvey RW, Metge DW, Repert DA, Baumgartner LK, Smith RL, Roane TM, Barber LB (2011) Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ Sci Technol 45(7):3096–3101

    Google Scholar 

  • Von Gunten U (2003a) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467

    Google Scholar 

  • Von Gunten U (2003b) Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37(7):1469–1487

    Google Scholar 

  • Wang CJ, Li Z, Jiang WT (2011) Adsorption of ciprofloxacin on 2: 1 dioctahedral clay minerals. Appl Clay Sci 53(4):723–728

    Article  CAS  Google Scholar 

  • Watkinson AJ, Murby EJ, Costanzo SD (2007) Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res 41(18):4164–4176

    Article  CAS  Google Scholar 

  • Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD (2009) The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ 407(8):2711–2723

    Article  CAS  Google Scholar 

  • Xie H, Liu W, Zhang J, Zhang C, Ren L (2011) Sorption of norfloxacin from aqueous solutions by activated carbon developed from Trapa natans husk. Sci China Chem 54(5):835–843

    Article  CAS  Google Scholar 

  • Xiong W, Zeng Z, Li X, Zeng G, Xiao R, Yang Z, Xu H, Chen H, Cao J, Zhou C, Qin L (2019) Ni-doped MIL-53 (Fe) nanoparticles for optimized doxycycline removal by using response surface methodology from aqueous solution. Chemosphere 232:186–194

    Article  CAS  Google Scholar 

  • Xiong W, Zeng G, Yang Z, Zhou Y, Zhang C, Cheng M, Liu Y, Hu L, Wan J, Zhou C, Xu R (2018) Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent. Sci Total Environ 627:235–244

    Article  CAS  Google Scholar 

  • Xu W, Zhang G, Zou S, Ling Z, Wang G, Yan W (2009) A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China. Water Environ Res 81(3):248–254

    Article  CAS  Google Scholar 

  • Yang X, Xu G, Yu H, Zhang Z (2016) Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Biores Technol 211:566–573

    Article  CAS  Google Scholar 

  • Zhan X, Chen J, Yang YQ, Wu SJ, Chen FR, Ying GG, Zhang CJ, Zhang LL, Zhang Q, Sun XW (2019) Removal of antibiotics and antibiotic resistance genes from domestic sewage by a subsurface wastewater infiltration system with long-term operations. Environ Eng Sci 36(8):863–872

    Google Scholar 

  • Zhang CL, Qiao GL, Zhao F, Wang Y (2011) Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J Mol Liq 163(1):53–56

    Article  CAS  Google Scholar 

  • Zhang L, Wang Y, Jin S, Lu Q, Ji J (2017) Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions. Environ Technol 38(20):2629–2638

    Article  CAS  Google Scholar 

  • Zheng Y, Huang MH, Chen L, Zheng W, Xie PK, Xu Q (2015) Comparison of tetracycline rejection in reclaimed water by three kinds of forward osmosis membranes. Desalination 359:113–122

    Article  CAS  Google Scholar 

  • Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Wei J, Luo L, Lei M, Tang L (2017) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Biores Technol 245:266–273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagat, C., Kumar, M., Mohapatra, P.K. (2021). Reigning Technologies and Their Challenges for Antibiotics Removal. In: Kumar, M., Snow, D., Honda, R., Mukherjee, S. (eds) Contaminants in Drinking and Wastewater Sources. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4599-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4599-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4598-6

  • Online ISBN: 978-981-15-4599-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics