Skip to main content
Log in

Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Global detection of antibiotic substances in water matrices has considerably increased in the recent past. However, in India research on this issue is limited or generalised in the literature. Risks associated with the presence of antibiotics in the environment can be quantified using a hazard quotient (HQ) approach. Here, HQs were developed using the measured environmental concentration (MEC) approach for antibiotic residues in Indian water matrices previously reported in the literature. In the present study, environmental risk assessment, using the HQ index [HQ = measured environmental concentration (MEC)/predicted no effect concentration (PNEC)] for different antibiotics, was performed according to the guidelines of European Medicine Evaluation Agency (EMEA). MEC and PNEC levels were obtained from the literature. PNEC values were also calculated from EC50 using a safety factor when no PNECs were reported in the literature. HQs were obtained for industrial effluents (HQ = 104) that were greater than any previously reported values. Ciprofloxacin, a fluoroquinolone antibiotic, seemed to present the greatest risk in India. The HQ indices for Indian water matrices were in the following order: industrial effluents > lake water > river water > hospital effluents > treated sewage ≃ groundwater. A very high HQ represents a potential environmental concern for aquatic environments in India and demands that immediate attention be devoted to regulating these compounds, especially in pharmaceutical industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 38:3291–3301

    Article  CAS  Google Scholar 

  • Backhaus T, Scholze M, Grimme LH (2000) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49:4961

    Article  Google Scholar 

  • Bayer (1997) Baytril 10% injection: safety datasheet 345354/01. Bayer, Newbury

    Google Scholar 

  • Brain RA, Johnson DJ, Richards SM, Sanderson H, Sibley PK, Solomon KR (2004) Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test. Environ Toxicol Chem 23:371–382

    Article  CAS  Google Scholar 

  • CCI (2012) A brief report on pharmaceutical industry in India. http://www.cci.in/pdf/surveys_reports/Pharmaceutical-Industry-in-India.pdf

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(6):907–938

    Article  CAS  Google Scholar 

  • Diwan V, Tamhankar AJ, Aggarwal M, Sen S, Khandal RK, Stålsby Lundborg C (2009) Detection of antibiotics in hospital effluents in India. Curr Sci 97:1752–1755

    CAS  Google Scholar 

  • Diwan V, Tamhankar AJ, Khandal RK, Sen S, Aggarwal M, Marothi Y, Iyer RV, Sundblad-Tonderski K, Stålsby-Lundborg C (2010) Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 10:414–422

    Article  Google Scholar 

  • Duong HA, Pham NH, Nguyen HT, Hoang TT, Pham HV, Pham VC, Berg M, Giger W, Alder AC (2008) Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere 72:968–973

    Article  CAS  Google Scholar 

  • Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733–1738

    Article  CAS  Google Scholar 

  • European Commission (2003) Technical Guidance Document (TGD) on Risk Assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances, Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market: Part II. Brussels: European Commission; 2003

  • Ferrari B, Paxeus N, Giudice RL, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 55:359–370

    Article  CAS  Google Scholar 

  • Fick J, Söderström H, Linderberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527

    Article  CAS  Google Scholar 

  • Flaherty  CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61:200–207

    Google Scholar 

  • Food and Drug Administration (FDA)—Centre for Drug Evaluation and Research (CDER) (1996) Retrospective Review of Ecotoxicity Data Submitted in Environmental Assessments. FDA-CDER, Rockville

    Google Scholar 

  • Githinji LJM, Musey MK, Ankumah RO (2011) Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut 219:191–201

    Article  CAS  Google Scholar 

  • Greenhalgh T (1987) Drug prescription and self-medication in India: an exploratory survey. Soc Sci Med 25:307–318

    Article  CAS  Google Scholar 

  • Gros M, Petrović  M, Ginebreda  A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36:15–26

    Google Scholar 

  • Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7:e1002158

    Article  CAS  Google Scholar 

  • Gunnarsson L, Kristiansson E, Rutgersson C, Sturve J, Fick J, Forlin L, Larsson DGJ (2009) Pharmaceutical industry effluent diluted 1:500 affects global gene expression, cytochrome P450 1A activity, and plasma phosphate in fish. Environ Toxicol Chem 28:2639–2647

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Holten-Lützhøft HC, Andersen HR, Ingerslev F (2000) Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J Antimicrob Chemother 46:53–58

    Article  Google Scholar 

  • Han GH, Hur HG, Kim SD (2006) Ecotoxicological risk of pharmaceuticals from wastewater treatment plants in Korea: occurrence and toxicity to Daphnia magna. Toxicol Chem 25:265–271

    Article  CAS  Google Scholar 

  • Hayashi TI (2007) Ecological risk assessment of chloroform in Japanese surface waters considering the difference in the reliability of ecotoxicological data. Aust J Ecotoxicol 13:119–130

    CAS  Google Scholar 

  • Henry TB, Kwon JW, Armbrust KL, Black MC (2004) Acute and chronic toxicity of five selective serotonin reuptake inhibitors in Ceriodaphnia dubia. Environ Toxicol Chem 23:2229–2233

    Article  CAS  Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342

    Article  CAS  Google Scholar 

  • Hilton M, Thomas KV (2003) Determination of selected human pharmaceutical compounds in effluents and surface water samples by High-Performance Liquid Chromatography–Electrospray Tandem Mass Spectrometry. J Chromatogr A 1015:129–141

    Article  CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Google Scholar 

  • Hokstad P, Steiro T (2006) Overall strategy for risk evaluation and priority setting of risk regulations. Reliab Eng Syst Saf 91:3575–3586

    Article  Google Scholar 

  • Holten-Lützhøft HC, Halling-Sørensen B, Jobrgensen SE (1999) Algal toxicity of antibacterial agents in Danish fish farming. Arch Environ Contam Toxicol 36:1–6

    Article  Google Scholar 

  • Institute for Health and Consumer Protection (IHCP) (1996) Technical Guidance Document (TGD) on Risk Assessment in Support of Council Directive 93/67/EEC on Risk Assessment for New Notified Substances; Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances; Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market. Luxembourg: Office for Official Publications of the European Communities

  • Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87–98

    Article  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 english prescription pharmaceuticals. Water Res 36:5013–5022

    Article  CAS  Google Scholar 

  • Karthikeyan KG, Meyer MT (2006) Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ 361:196–207

    Article  CAS  Google Scholar 

  • Kim SC, Carlson K (2007) Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ Sci Technol 41:50–57

    Article  CAS  Google Scholar 

  • Kim Y, Choi K, Jung JY, Park S, Kim P, Park J (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33:370–375

    Article  CAS  Google Scholar 

  • Kookana RS, Ying G, Waller NJ (2011) Triclosan: its occurrence, fate and effects in the Australian environment. Water Sci Technol 63:598–604

    Article  CAS  Google Scholar 

  • Kumar PA, Joseph B, Patterson J (2011) Antibiotic and heavy metal resistance profile of pathogens isolated from infected fish in Tuticorin, south-east coast of India. Indian J Fish 58:121–125

    Google Scholar 

  • Kurunthachalam SK (2012) Pharmaceutical Substances in India are a Point of Great Concern ? Hydrol Curr Res 3:3–5

    Article  Google Scholar 

  • Lanzky PF, Halling-Sørensen B (1997) The toxic effect of the antibiotic metronidazol on aquatic organisms. Chemosphere 35:2553–2561

    Article  CAS  Google Scholar 

  • Larsson DGJ, Fick J (2009) Transparency throughout the production chain—a way to reduce pollution from the manufacturing of pharmaceuticals? Regul Toxicol Pharmacol 53:161–163

    Article  Google Scholar 

  • Larsson DJG, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Article  CAS  Google Scholar 

  • Laville N, Aït-Aïssa S, Gomez E, Casellas C, Porcher JM (2004) Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicol 196:41–55

    Article  CAS  Google Scholar 

  • Lee YJ, Lee SE, Lee DS, Kim YH (2008) Risk assessment of human antibiotics in Korean aquatic environment. Environ Toxicol Pharmacol 26:216–221

    Article  CAS  Google Scholar 

  • Lemus JA, Blanco G, Grande J, Arroyo B, García-Montijano M, Martínez F (2008) Antibiotics threaten wildlife: circulating quinolone residues and disease in Avian scavengers. PloS One 3(1):e1444

    Article  Google Scholar 

  • Liebig M, Moltmann JF, Knacker T (2006) Evaluation of measured and predicted environmental concentrations of selected human pharmaceuticals and personal care products. Environ Sci Pollut Res 13:110–119

    Article  CAS  Google Scholar 

  • Li D, Yu T, Zhang Y, Yang M, Li Z, Liu M, Qi R (2010) Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. App Environ Microbiol 76:3444–3451

    Article  CAS  Google Scholar 

  • Lilius H, Isomaa B, Holmstrom T (1994) A comparison of the toxicity of 50 reference chemicals to freshly isolated rainbow trout hepatocytes and Daphnia magna. Aquat Toxicol 30:47–60

    Article  CAS  Google Scholar 

  • Lin AYC, Tsai YT (2009) Occurrence of pharmaceuticals in Taiwan's surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407:3793–3802

    Article  CAS  Google Scholar 

  • Lubik N (2009) India’s drug problem. Nature 457:640–641

    Article  Google Scholar 

  • Martins N, Pereira R, Abrantes N, Pereira J, Gonc F, Marques CR (2012) Ecotoxicological effects of ciprofloxacin on freshwater species : data integration and derivation of toxicity thresholds for risk assessment. Ecotoxicology 21:1167–1176

    Article  CAS  Google Scholar 

  • Middleton JH, Salierno JD (2013) Antibiotic resistance in triclosan tolerant fecal coliforms isolated from surface waters near wastewater treatment plant outflows (Morris County, NJ, USA). Ecotoxicol Environ Saf 88:79–88

    Article  CAS  Google Scholar 

  • Mutiyar PK, Mittal AK (2013) Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: a case study of emerging pollutant. Desalin Water Treat 51:6158–6164

    CAS  Google Scholar 

  • Mutiyar PK, Mittal AK (2014) Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India). Environ Monit Assess 186:541–557

    Article  CAS  Google Scholar 

  • Mutiyar PK, Mittal AK, Pekdeger A (2011) Status of organochlorine pesticides in the drinking water well-field located in the Delhi region of the flood plains of river Yamuna. Drink Water Eng Sci 4:51–60

    Article  CAS  Google Scholar 

  • Nunes B, Carvalho F, Guilhermino L (2005) Acute toxicity of widely used pharmaceuticals in aquatic species: Gambusia holbrooki, Artemia parthenogenetica and Tetraselmis chuii. Ecotoxicol Environ Saf 61:413–419

    Article  CAS  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJI, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (1995) Guidance Document for Aquatic Effects Assessment. OECD Environ Monogr No. 92

  • Palomaki CA (2010) Toxicity and mode of action of the pharmaceutical fungicides Fluconazole and Terbinafine to freshwater algae, Master’s thesis, Department of Chemical and Biological Engineering. Chalmers University of Technology, Göteborg

    Google Scholar 

  • Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 17:526–538

    Article  CAS  Google Scholar 

  • Ramaswamy BR, Shanmugam G, Rengrajan VB, Larsson DGJ (2011) GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J Hazard Mater 186:1586–1593

    Article  CAS  Google Scholar 

  • Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24:423–430

    Article  CAS  Google Scholar 

  • Sahoo KC, Tamhankar AJ, Sahoo S, Sahu PS, Klintz SR, Lundborg CS (2012) Geographical variation in antibiotic-resistant Escherichia coli isolates from stool, cow-dung and drinking water. Int J Environ Res Public Health 9:746–759

    Article  CAS  Google Scholar 

  • Sanderson H, Brain RA, Johnson DJ, Wilson CJ, Solomon KR (2004) Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicol 203:27–40

    Article  CAS  Google Scholar 

  • Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR Screening. Toxicol Lett 144:383–395

    Article  CAS  Google Scholar 

  • Shah SQ, Colquhoun DJ, Nikuli HL, Sørum H (2012) Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. Environ Sci Technol 46:8672–8679

    Article  CAS  Google Scholar 

  • Shanmugam G, Sampath S, Selvaraj KK, Larsson DGJ, Ramaswamy BR (2013) Non-steroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res (in press). DOI 10.1007/s11356-013-1957-6

  • Suter GW (2006) Ecological risk assessment. CRC Press, New York

    Book  Google Scholar 

  • Swapna KM, Rajesh R, Lakshmanan PT (2012) Incidence of antibiotic residues in farmed shrimps from the southern states of India. Indian J Fish 41:344–347

    CAS  Google Scholar 

  • Taggart MA, Senacha KR, Green RE, Cuthbert R, Jhala YV, Meharg AA, Mateo R, Pain DJ (2009) Analysis of nine NSAIDs in ungulate tissues available to critically endangered vultures in India. Environ Sci Technol 43:4561–4566

    Article  CAS  Google Scholar 

  • Tamtam F, Mercier F, Le Bot B, Eurin J, Tuc Dinh Q, Clément M, Chevreuil M (2008) Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ 393:84–95

    Article  CAS  Google Scholar 

  • US Environment Protection Agency (US EPA) (1998) Guidelines for Ecological Risk Assessment, EPA/630/R-95/002F. Risk Assessment Forum, Washington DC

    Google Scholar 

  • Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362

    Article  Google Scholar 

  • Wollenberger L, Halling-Sørensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723–730

    Article  CAS  Google Scholar 

  • Yang LH, Ying GG, Su HC, Stauber JL, Adams MS, Binet MT (2008) Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ Toxicol Chem 27:1201–1208

    Article  CAS  Google Scholar 

  • Ying G, Kookana RS (2007) Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ Int 33:199–205

    Article  CAS  Google Scholar 

  • Zhang R, Zhang G, Zheng Q, Tang J, Chen Y, Xu W, Zou Y, Chen X (2012) Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Ecotoxicol Environ Saf 80:208–215

    Article  CAS  Google Scholar 

  • Zounkova R, Kovalova L, Blaha L, Dott W (2010) Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere 81:253–260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin K. Mutiyar.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutiyar, P.K., Mittal, A.K. Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges. Environ Sci Pollut Res 21, 7723–7736 (2014). https://doi.org/10.1007/s11356-014-2702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2702-5

Keywords

Navigation