Skip to main content

The Groupoid Approach to Leavitt Path Algebras

  • Conference paper
  • First Online:
Leavitt Path Algebras and Classical K-Theory

Part of the book series: Indian Statistical Institute Series ((INSIS))

Abstract

When the theory of Leavitt path algebras was already quite advanced, it was discovered that some of the more difficult questions were susceptible to a new approach using topological groupoids. The main result that makes this possible is that the Leavitt path algebra of a graph is graded isomorphic to the Steinberg algebra of the graph’s boundary path groupoid. This expository paper has three parts: Part 1 is on the Steinberg algebra of a groupoid, Part 2 is on the path space and boundary path groupoid of a graph, and Part 3 is on the Leavitt path algebra of a graph. It is a self-contained reference on these topics, intended to be useful to beginners and experts alike. While revisiting the fundamentals, we prove some results in greater generality than can be found elsewhere, including the uniqueness theorems for Leavitt path algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note the subtle difference in notation: we were using Z for basic open sets in \(\partial E\) and now we are using \({\mathcal {Z}}\) for basic open sets in \(\mathcal {G}_E\).

References

  1. G. Abrams, Leavitt path algebras: the first decade. Bull. Math. Sci. 5(1), 59–120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph. J. Algebra 293(2), 319–334 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Abrams, G. Aranda Pino, The Leavitt path algebras of arbitrary graphs. Houst. J. Math. 34(2), 423–442 (2008)

    Google Scholar 

  4. G. Abrams, M. Tomforde, Isomorphism and Morita equivalence of graph algebras. Trans. Am. Math. Soc. 363(7), 3733–3767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Abrams, G. Aranda Pino, M. Siles Molina, Finite-dimensional Leavitt path algebras. J. Pure Appl. Algebra 209(3), 753–762 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Abrams, J. Bell, K.M. Rangaswamy, On prime nonprimitive von Neumann regular algebras. Trans. Am. Math. Soc. 366(5), 2375–2392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Abrams, P. Ara, M. Siles Molina, Leavitt Path Algebras. Lecture Notes in Mathematics, vol. 2191 (Springer, Berlin, 2017)

    Book  MATH  Google Scholar 

  8. A. Alahmedi, H. Alsulami, S. Jain, E.I. Zelmanov, Structure of Leavitt path algebras of polynomial growth. Proc. Natl. Acad. Sci. USA 110(38), 15222–15224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.A. Ambily, R. Hazrat, H. Li, Simple flat Leavitt path algebras are von Neumann regular. Commun. Algebra, 1–13 (2019). https://doi.org/10.1080/00927872.2018.1513015

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Ánh, L. Márki, Morita equivalence for rings without identity. Tsukuba J. Math. 11(1), 1–16 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Ara, K.R. Goodearl, E. Pardo, \(K_0\) of purely infinite simple regular rings. K-Theory 26(1), 69–100 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Ara, M.A. Moreno, E. Pardo, Nonstable \(K\)-theory for graph algebras. Algebras Represent. Theory 10(2), 157–178 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Ara, J. Bosa, R. Hazrat, A. Sims, Reconstruction of graded groupoids from graded Steinberg algebras. Forum Math. 29(5), 1023–1037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Aranda Pino, D. Martín Barquero, C. Martín González, M. Siles Molina, Socle theory for Leavitt path algebras of arbitrary graphs. Rev. Mat. Iberoam. 26(2), 611–638 (2010)

    Google Scholar 

  15. G. Aranda Pino, K.M. Rangaswamy, L. Vaš, \(*\)-Regular Leavitt path algebras of arbitrary graphs. Acta Math. Sin. Engl. Ser. 28(5), 957–968 (2012)

    Google Scholar 

  16. T. Bates, D. Pask, I. Raeburn, W. Szymański, The \(C^*\)-algebras of row-finite graphs. N. Y. J. Math. 6, 307–324 (2000)

    MathSciNet  MATH  Google Scholar 

  17. V. Beuter, D. Gonçalves, The interplay between Steinberg algebras and skew group rings. J. Algebra 487, 337–362 (2018)

    Article  MATH  Google Scholar 

  18. M. Brešar, Introduction to Noncommutative Algebra, Universitext (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  19. J.H. Brown, L.O. Clark, A. an Huef, Diagonal-preserving ring \(*\)-isomorphisms of Leavitt path algebras. J. Pure Appl. Algebra 221(10), 2458–2481 (2017)

    Google Scholar 

  20. J. Brown, L.O. Clark, C. Farthing, A. Sims, Simplicity of algebras associated to étale groupoids. Semigroup Forum 88(2), 433–452 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Brownlowe, T.M. Carlsen, M.F. Whittaker, Graph algebras and orbit equivalence. Ergod. Theory Dyn. Syst. 37(2), 389–417 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. T.M. Carlsen, \(*\)-isomorphism of Leavitt path algebras over \(\mathbb{Z}\). Adv. Math. 324, 326–335 (2018)

    Google Scholar 

  23. T.M. Carlsen, J. Rout, Diagonal-preserving graded isomorphisms of Steinberg algebras. Commun. Contemp. Math. 1750064 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. L.O. Clark, A. Sims, Equivalent groupoids have Morita equivalent Steinberg algebras. J. Pure Appl. Algebra 219(6), 2062–2075 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. L.O. Clark, C. Edie-Michell, Uniqueness theorems for Steinberg algebras. Algebra Represent. Theory 18(4), 907–916 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. L.O. Clark, Y.E. Pangalela, Cohn path algebras of higher-rank graphs. Algebra Represent. Theory 20(1), 47–70 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. L.O. Clark, C. Farthing, A. Sims, M. Tomforde, A groupoid generalisation of Leavitt path algebras. Semigroup Forum 89(3), 501–517 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. L.O. Clark, D. Martín Barquero, C. Martín González, M. Siles Molina, Using Steinberg algebras to study decomposability of Leavitt path algebras. Forum Math. 29(6), 1311–1324 (2016)

    Google Scholar 

  29. L.O. Clark, Y.E. Pangalela, Kumjian-Pask algebras of finitely aligned higher-rank graphs. J. Algebra 482, 364–397 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. L.O. Clark, D. Martín Barquero, C. Martín González, M. Siles Molina, Using the Steinberg algebra model to determine the center of any Leavitt path algebra. Isr. J. Math. 1–22 (2018). https://doi.org/10.1007/s11856-018-1816-8

    Article  MathSciNet  MATH  Google Scholar 

  31. L.O. Clark, R. Exel, E. Pardo, A. Sims, C. Starling, Simplicity of algebras associated to non-Hausdorff groupoids (2018). https://doi.org/10.1090/tran/7840

    Article  MathSciNet  MATH  Google Scholar 

  32. L.O. Clark, R. Exel, E. Pardo, A generalized uniqueness theorem and the graded ideal structure of Steinberg algebras. Forum Math. 30(3), 533–552 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Cuntz, Simple \(C^*\)-algebras generated by isometries. Commun. Math. Phys. 57(2), 173–185 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Cuntz, W. Krieger, A class of \(C^*\)-algebras and topological Markov chains. Inven. Math. 56(3), 251–268 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Deaconu, Groupoids associated with endomorphisms. Trans. Am. Math. Soc. 347(5), 1779–1786 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Dokuchaev, R. Exel, P. Piccione, Partial representations and partial group algebras. J. Algebra 226(1), 505–532 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Eilers, G. Restorff, E. Ruiz, A.P. Sørensen, The complete classification of unital graph \(C^*\)-algebras: Geometric and strong (2016), arXiv:1611.07120v1

  38. R. Exel, Inverse semigroups and combinatorial \(C^*\)-algebras. Bull. Braz. Math. Soc. New Ser. 39(2), 191–313 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Exel, Reconstructing a totally disconnected groupoid from its ample semigroup. Proc. Am. Math. Soc. 138(8), 2991–3001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Exel, Partial Dynamical Systems, Fell Bundles and Applications. Mathematical Surveys and Monographs, vol. 224 (American Mathematical Society, Providence, 2017)

    Google Scholar 

  41. D. Gonçalves, D. Royer, Leavitt path algebras as partial skew group rings. Commun. Algebra 42(8), 3578–3592 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. K.R. Goodearl, Von Neumann Regular Rings (Pitman, London, 1979)

    Google Scholar 

  43. K.R. Goodearl, Leavitt path algebras and direct limits. Contemp. Math. 480(200), 165–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Hazrat, The graded Grothendieck group and the classification of Leavitt path algebras. Math. Ann. 355(1), 273–325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Hazrat, H. Li, Graded Steinberg algebras and partial actions. J. Pure Appl. Algebra 222(12), 3946–3967 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Hazrat, L. Vaš, Baer and Baer \(^*\)-ring characterizations of Leavitt path algebras. J. Pure Appl. Algebra 222(1), 39–60 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Kanuni, D. Martín Barquero, C. Martín González, M. Siles Molina, Classification of Leavitt path algebras with two vertices (2017). http://www.mathjournals.org/mmj/2019-019-003/2019-019-003-004.html

  48. I. Kaplansky, Fields and Rings, 2nd ed. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 1972)

    Google Scholar 

  49. A. Kumjian, D. Pask, Higher rank graph \(C^*\)-algebras. N. Y. J. Math. 6(1), 1–20 (2000)

    MathSciNet  MATH  Google Scholar 

  50. A. Kumjian, D. Pask, I. Raeburn, J. Renault, Graphs, groupoids, and Cuntz-Krieger algebras. J. Funct. Anal. 144(2), 505–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. W.G. Leavitt, The module type of a ring. Trans. Am. Math. Soc. 103(1), 113–130 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  52. W.G. Leavitt, The module type of homomorphic images. Duke Math. J. 32(2), 305–311 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  53. J.-L. Loday, Cyclic Homology. Grundlehren der mathematischen Wissenschaften, vol. 301, 2nd ed. (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  54. V. Nekrashevych, Growth of étale groupoids and simple algebras. Int. J. Algebra Comput. 26(2), 375–397 (2016)

    Article  MATH  Google Scholar 

  55. E. Pardo, The isomorphism problem for Higman-Thompson groups. J. Algebra 344, 172–183 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. A.L.T. Paterson, Groupoids, Inverse Semigroups, and Their Operator Algebras. Progress in Mathematics, vol. 170 (Springer, Berlin, 1999)

    Google Scholar 

  57. A.L.T. Paterson, Graph inverse semigroups, groupoids and their \(C^*\)-algebras. J. Oper. Theory 48(3), 645–662 (2002)

    MathSciNet  MATH  Google Scholar 

  58. I. Raeburn, Graph Algebras. CBMS Regional Conference Series in Mathematics, vol. 103 (American Mathematical Society, Providence 2005)

    Google Scholar 

  59. J. Renault, A Groupoid Approach to\(C^*\)-Algebras. Lecture Notes in Mathematics, vol. 793 (Springer, Berlin, 1980)

    Google Scholar 

  60. J. Renault, Cartan subalgebras in \(C^*\)-algebras. Bull. Ir. Math. Soc. 61, 29–63 (2008)

    MathSciNet  MATH  Google Scholar 

  61. J. Renault, A. Sims, D. Williams, T. Yeend, Uniqueness theorems for topological higher-rank graph \(C^*\)-algebras. Proc. Am. Math. Soc. 146(2), 669–684 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. A. Sims, Étale groupoids and their \(C^*\)-algebras (2017), arXiv:1710.10897v1

  63. B. Steinberg, A groupoid approach to discrete inverse semigroup algebras. Adv. Math. 223(2), 689–727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. B. Steinberg, Simplicity, primitivity and semiprimitivity of étale groupoid algebras with applications to inverse semigroup algebras. J. Pure Appl. Algebra 220(3), 1035–1054 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. B. Steinberg, Chain conditions on étale groupoid algebras with applications to Leavitt path algebras and inverse semigroup algebras. J. Aust. Math. Soc. 104(3), 403–411 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  66. B. Steinberg, Diagonal-preserving isomorphisms of étale groupoid algebras. J. Algebra 518, 412–439 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. B. Steinberg, Prime étale groupoid algebras with applications to inverse semigroup and Leavitt path algebras. J. Pure Appl. Algebra 223(6), 2474–2488 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Tomforde, Leavitt path algebras with coefficients in a commutative ring. J. Pure Appl. Algebra 215(4), 471–484 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. S. Webster, The path space of a directed graph. Proc. Am. Math. Soc. 142(1), 213–225 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Willard, General Topology. Addison-Wesley Series in Mathematics (Addison-Wesley, Boston, 1970)

    Google Scholar 

  71. T. Yeend, Groupoid models for the \(C^*\)-algebras of topological higher-rank graphs. J. Oper. Theory 57(1), 95–120 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank Juana Sánchez Ortega, for her valuable advice and guidance throughout my Masters degree. I also thank Giang Nam Tran for finding an important error in an earlier version of the paper and suggesting a way to fix it. Finally, I thank the two examiners of my Masters thesis, Pere Ara and Aidan Sims, who wrote very insightful comments that led to an improvement of this work.

 I acknowledge the support of the National Research Foundation of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon W. Rigby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rigby, S.W. (2020). The Groupoid Approach to Leavitt Path Algebras. In: Ambily, A., Hazrat, R., Sury, B. (eds) Leavitt Path Algebras and Classical K-Theory. Indian Statistical Institute Series. Springer, Singapore. https://doi.org/10.1007/978-981-15-1611-5_2

Download citation

Publish with us

Policies and ethics