Skip to main content
Log in

A groupoid generalisation of Leavitt path algebras

  • RESEARCH ARTICLE
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

Let \(G\) be a locally compact, Hausdorff, étale groupoid whose unit space is totally disconnected. We show that the collection \(A(G)\) of locally-constant, compactly supported complex-valued functions on \(G\) is a dense \(*\)-subalgebra of \(C_c(G)\) and that it is universal for algebraic representations of the collection of compact open bisections of \(G\). We also show that if \(G\) is the groupoid associated to a row-finite graph or \(k\)-graph with no sources, then \(A(G)\) is isomorphic to the associated Leavitt path algebra or Kumjian–Pask algebra. We prove versions of the Cuntz–Krieger and graded uniqueness theorems for \(A(G)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We would like to thank Steinberg who brought this to our attention after reading an earlier version of this paper.

References

  1. Abrams, G., Aranda Pino, G.: The Leavitt path algebra of a graph. J. Algebra 293, 319–334 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ara, P., Moreno, M.A., Pardo, E.: Nonstable \(K\)-theory for graph algebras. Algebr. Represent. Theory 10, 157–178 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aranda Pino, G., Clark, J., Huef, A., Raeburn, I.: Kumjian–Pask algebras of higher-rank graphs. Trans. Am. Math. Soc. 125, 1115–1125 (1998)

    Google Scholar 

  4. Brown, J., Clark, L.O., Farthing, C., Sims, A.: Simplicity of algebras associated to étale groupoids, Semigroup Forum (2013). doi:10.1007/s00233-013-9546-z

  5. Bates, T., Pask, D., Raeburn, I., Szymański, W.: The \({C}^*\)-algebras of row-finite graphs. N. Y. J. Math. 6, 307–324 (2000)

    MATH  Google Scholar 

  6. Cuntz, J., Krieger, W.: A class of \(C^{\ast }\) algebras and topological Markov chains. Invent. Math. 56, 251–268 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Exel, R.: Reconstructing a totally disconnected groupoid from its ample semigroup. Proc. Am. Math. Soc. 138, 2991–3001 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farthing, C., Muhly, P., Yeend, T.: Higher-rank graph \(C^*\)-algebras: an inverse semigroup and groupoid approach. Semigroup Forum 71, 159–187 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ionescu, M., Muhly, P.: Groupoid methods in wavelet analysis, Contemp. Math., 449, Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, 193–208, Amer. Math. Soc., Providence, RI (2008)

  10. Kumjian, A., Pask, D.: Higher rank graph \(C^\ast \)-algebras. N. Y. J. Math. 6, 1–20 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Kumjian, A., Pask, D., Raeburn, I.: Cuntz–Krieger algebras of directed graphs. Pac. J. Math. 184, 161–174 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kumjian, A., Pask, D., Raeburn, I., Renault, J.: Graphs, groupoids, and Cuntz–Krieger algebras. J. Funct. Anal. 144, 505–541 (1997)

    Google Scholar 

  13. Leavitt, W.: Modules without invariant basis number. Proc. Am. Math. Soc. 8, 322–328 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leavitt, W.: The module type of a ring. Trans. Am. Math. Soc. 42, 113–130 (1962)

    Article  MathSciNet  Google Scholar 

  15. Raeburn, I.: Graph algebras, CBMS Regional Conference Series in Mathematics, 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2005, p. vi+113

  16. Raeburn, I.: \(C^*\)-algebras, higher rank algebras and algebraic uniqueness theorems, in Graph algebras: bridging the gap between analysis and algebra, G. Aranda Pino, F. Perera Domènech, M. Siles Molina (eds.), Servicio de Publicaciones de la Universidad de Málaga, Málaga, Spain, 2007, ix+216pp (2007)

  17. Raeburn, I., Sims, A., Yeend, T.: Higher-rank graphs and their \({C}^*\)-algebras. Proc. Edinb. Math. Soc. 46, 99–115 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Raeburn, I., Sims, A., Yeend, T.: The \({C}^*\)-algebras of finitely aligned higer-rank graphs. J. Funct. Anal. 213, 206–240 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Renault, J.: A groupoid approach to \(C^*\)-algebras. Lecture Notes in Mathematics, 793. Springer, Berlin, 1980. p. ii+160

  20. Robertson, G., Steger, T.: Affine buildings, tiling systems and higher rank Cuntz–Krieger algebras. J. Reine Angew. Math. 513, 115–144 (1999)

    Google Scholar 

  21. Steinberg, B.: A groupoid approach to discrete inverse semigroup algebras, preprint 2009. arXiv:0903.3456v1

  22. Steinberg, B.: A groupoid approach to discrete inverse semigroup algebras. Adv. Math. 223, 689–727 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tomforde, M.: Uniqueness theorems and ideal structure for Leavitt path algebras. J. Algebra 318, 270–299 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tomforde, M.: Leavitt path algebras with coefficients in a commutative ring. J. Pure Appl. Algebra 215, 471–484 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the Simons Foundation (#210035 to Mark Tomforde).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Orloff Clark.

Additional information

Communicated by Benjamin Steinberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, L.O., Farthing, C., Sims, A. et al. A groupoid generalisation of Leavitt path algebras. Semigroup Forum 89, 501–517 (2014). https://doi.org/10.1007/s00233-014-9594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-014-9594-z

Keywords

Navigation