Skip to main content

Microbial Communities in Constructed Wetland Microcosms and Their Role in Treatment of Domestic Wastewater

  • Chapter
  • First Online:
Emerging Eco-friendly Green Technologies for Wastewater Treatment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 18))

Abstract

Microbial biomass is the main reducer for majority of organics and nutrients. The aerobic region of constructed wetland microcosms (CWMs) is majorly characterized by presence of Nitrosomonas and Pseudomonas spp. The diversity of ammonia-oxidizers mainly Nitrosospira sp. is higher in CWMs designed to treat domestic wastewater as compared to other bacteria studied. The activity of enzymes within CWMs is a key indicator towards role of microbial community. Rhizospheric region has diverse elements that comprises minerals, sugars, vitamins, organic acids, polysaccharides, phenol and various other organic materials that encourages the microbial groups to degrade wastewater pollutants. The presence of macrophytes has significant effects on microbial richness and community structure. The root exudates liberated by macrophytes are also able to alter the richness and diversity of the microbial population. The decomposition rates of microbes become slow as temperatures drop, which can be optimized by increasing the size of wetlands to accomplish the slower reaction rates. The pH of wastewater has also a strong effect on various microbially mediated reactions and processes. Temperature, hydrologic conditions, macrophytic diversity/richness and biotic succession strongly impact the microbial community structure. A little alteration in the diversity or community structure of the microorganisms directly affects the treatment performance of CWMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrados B, Sánchez O, Arias CA, Becares E, Garrido L, Mas J, Morató J (2014) Microbial communities from different types of natural wastewater treatment systems: vertical and horizontal flow constructed wetlands and biofilters. Water Res 55:304–312

    Article  CAS  Google Scholar 

  • Ahn C, Gillevet PM, Sikaroodi M (2007) Molecular characterization of microbial communities in treatment microcosm wetlands as influenced by macrophytes and phosphorus loading. Ecol Indic 7(4):852–863

    Article  Google Scholar 

  • AlMulla A (2016) Sharjah integrated water management. In: Proceedings of the water and energy exchange (WEX 2016), 29

    Google Scholar 

  • Alufasi R, Gere J, Chakauya E, Lebea P, Parawira W, Chingwaru W (2017) Mechanisms of pathogen removal by macrophytes in constructed wetlands. Environ Technol Rev 6(1):135–144

    Article  CAS  Google Scholar 

  • Ansola G, Arroyo P, de Miera LES (2014) Characterization of the soil bacterial community structure and composition of natural and constructed wetlands. Sci Total Environ 473:63–71

    Article  CAS  Google Scholar 

  • Aon MA, Colaneri AC (2001) II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl Soil Ecol 18(3):255–270

    Article  Google Scholar 

  • Avila C, Bayona JM, Martín I, Salas JJ, García J (2015) Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. Ecol Eng 80:108–116

    Article  Google Scholar 

  • Behrends L, Houke L, Bailey E, Jansen P, Brown D (2001) Reciprocating constructed wetlands for treating industrial, municipal and agricultural wastewater. Water Sci Technol 44(11–12):399–405

    Article  CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256(1):67–83

    Article  CAS  Google Scholar 

  • Bitton G (2005) Wastewater microbiology. Wiley, Hoboken

    Book  Google Scholar 

  • Bojcevska H, Tonderski K (2007) Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. Ecol Eng 29(1):66–76

    Article  Google Scholar 

  • Calheiros CS, Rangel AO, Castro PM (2008a) Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation. Bioresour Technol 99(15):6866–6877

    Article  CAS  Google Scholar 

  • Calheiros CS, Rangel AO, Castro PM (2008b) The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch Environ Contam Toxicol 55(3):404–414

    Article  CAS  Google Scholar 

  • Calheiros CS, Duque AF, Moura A, Henriques IS, Correia A, Rangel AO, Castro PM (2009a) Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment. Bioresour Technol 100(13):3228–3235

    Article  CAS  Google Scholar 

  • Calheiros CS, Duque AF, Moura A, Henriques IS, Correia A, Rangel AO, Castro PM (2009b) Substrate effect on bacterial communities from constructed wetlands planted with Typha latifolia treating industrial wastewater. Ecol Eng 35(5):744–753

    Article  Google Scholar 

  • Calheiros CS, Teixeira A, Pires C (2010) Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing. Water Res 44:5032–5038

    Article  CAS  Google Scholar 

  • Calheiros CS, Rangel AO, Castro PM (2014) Constructed wetlands for tannery wastewater treatment in Portugal: ten years of experience. Int J Phytoremediation 16(9):859–870

    Article  Google Scholar 

  • Calheiros CSC, Pereira SIA, Brix H, Rangel AOSS, Castro PML (2017) Assessment of culturable bacterial endophytic communities colonizing Canna flaccida inhabiting a wastewater treatment constructed wetland. Ecol Eng 98:418–426

    Article  Google Scholar 

  • Carballeira T, Ruiz I, Soto M (2017) Aerobic and anaerobic biodegradability of accumulated solids in horizontal subsurface flow constructed wetlands. Int Biodeterior Biodegradation 119:396–404

    Article  CAS  Google Scholar 

  • Carvalho PN, Basto MCP, Almeida CMR (2012) Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media. Bioresour Technol 116:497–501

    Article  CAS  Google Scholar 

  • Caselles-Osorio A, Villafañe P, Caballero V, Manzano Y (2011) Efficiency of mesocosm-scale constructed wetland systems for treatment of sanitary wastewater under tropical conditions. Water Air Soil Pollut 220(1–4):161–171

    Article  CAS  Google Scholar 

  • Caselles-Osorio A, Vega H, Lancheros JC, Casierra-Martínez HA, Mosquera JE (2017) Horizontal subsurface-flow constructed wetland removal efficiency using Cyperus articulatus L. Ecol Eng 99:479–485

    Article  Google Scholar 

  • Chan SY, Tsang YF, Chua H, Sin SN, Cui LH (2008) Performance study of vegetated sequencing batch coal slag bed treating domestic wastewater in suburban area. Bioresour Technol 99(9):3774–3781

    Article  CAS  Google Scholar 

  • Chang D, Ma Z, Wang X (2013) Framework of wastewater reclamation and reuse policies (WRRPs) in China: comparative analysis across levels and areas. Environ Sci Pol 33:41–52

    Article  Google Scholar 

  • Chen Y, Wen Y, Cheng J, Xue C, Yang D, Zhou Q (2011) Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: implications for denitrification in constructed wetlands. Bioresour Technol 102(3):2433–2440

    Article  CAS  Google Scholar 

  • Cui L, Ouyang Y, Lou Q, Yang F, Chen Y, Zhu W, Luo S (2010) Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol Eng 36(8):1083–1088

    Article  Google Scholar 

  • Dong X, Reddy GB (2010) Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresour Technol 101(4):1175–1182

    Article  CAS  Google Scholar 

  • Duarte B, Reboreda R, Caçador I (2008) Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh. Chemosphere 73(7):1056–1063

    Article  CAS  Google Scholar 

  • Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J et al (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35(6):987–1004

    Article  Google Scholar 

  • Faulwetter JL, Burr MD, Parker AE, Stein OR, Camper AK (2013) Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms. Microb Ecol 65(1):111–127

    Article  CAS  Google Scholar 

  • Freeman C, Lock MA, Hughes S, Reynolds B, Hudson JA (1997) Nitrous oxide emissions and the use of wetlands for water quality amelioration. Environ Sci Technol 31(8):2438–2440

    Article  CAS  Google Scholar 

  • Garcı́a J, Ojeda E, Sales E, Chico F, Pı́riz T, Aguirre P, Mujeriego R (2003) Spatial variations of temperature, redox potential, and contaminants in horizontal flow reed beds. Ecol Eng 21(2–3):129–142

    Article  Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (1995) Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochemistry 30(2):115–141

    Article  CAS  Google Scholar 

  • Hilton BL (1993) Performance evaluation of a closed ecological life support system (CELSS) employing constructed wetlands. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. CRC Press, Boca Raton, pp 117–125

    Google Scholar 

  • Hoffland E, van den Boogaard RIKI, Nelemans JAAP, Findenegg G (1992) Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol 122(4):675–680

    Article  CAS  Google Scholar 

  • Hua Y, Peng L, Zhang S, Heal KV, Zhao J, Zhu D (2017) Effects of plants and temperature on nitrogen removal and microbiology in pilot-scale horizontal subsurface flow constructed wetlands treating domestic wastewater. Ecol Eng 108:70–77

    Article  Google Scholar 

  • Ibekwe AM, Grieve CM, Lyon SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl Environ Microbiol 69(9):5060–5069

    Article  CAS  Google Scholar 

  • Kadlec RH (1995) Overview: surface flow constructed wetlands. Water Sci Technol 32(3):1–12

    Article  CAS  Google Scholar 

  • Kadlec RH, Reddy KR (2001) Temperature effects in treatment wetlands. Water Environ Res 73(5):543–557

    Article  CAS  Google Scholar 

  • Kang H, Freeman C, Lee D, Mitsch WJ (1998) Enzyme activities in constructed wetlands: implication for water quality amelioration. Hydrobiologia 368(1–3):231–235

    Article  CAS  Google Scholar 

  • Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD (2007) Synchrony in aquatic microbial community dynamics. ISME J 1(1):38

    Article  CAS  Google Scholar 

  • Kong L, Wang YB, Zhao LN, Chen ZH (2009) Enzyme and root activities in surface-flow constructed wetlands. Chemosphere 76(5):601–608

    Article  CAS  Google Scholar 

  • Krasnits E, Friedler E, Sabbah I, Beliavski M, Tarre S, Green M (2009) Spatial distribution of major microbial groups in a well-established constructed wetland treating municipal wastewater. Ecol Eng 35(7):1085–1089

    Article  Google Scholar 

  • Kröger R, Lizotte RE, Douglas Shields F, Usborne E (2012) Inundation influences on bioavailability of phosphorus in managed wetland sediments in agricultural landscapes. J Environ Qual 41(2):604–614

    Article  CAS  Google Scholar 

  • Kumar S, Dutta V (2019a) Efficiency of constructed wetland microcosms (CWMs) for the treatment of domestic wastewater using aquatic macrophytes. In: Environmental biotechnology: for sustainable future. Springer, Singapore, pp 287–307

    Chapter  Google Scholar 

  • Kumar S, Dutta V (2019b) Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. Environ Sci Pollut Res 26(12):11662–11673

    Article  CAS  Google Scholar 

  • Laskov C, Horn O, Hupfer M (2006) Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus. Aquat Bot 84(4):333–340

    Article  CAS  Google Scholar 

  • Lee CG, Fletcher TD, Sun G (2009) Nitrogen removal in constructed wetland systems. Eng Life Sci 9(1):11–22

    Article  CAS  Google Scholar 

  • Llanos-Lizcano A, Barraza E, Narvaez A, Varela L, Caselles-Osorio A (2019) Efficiency of pilot-scale horizontal subsurface flow constructed wetlands and microbial community composition operating under tropical conditions. Int J Phytoremediation 21(1):34–42

    Article  CAS  Google Scholar 

  • Long Y, Yi H, Chen S, Zhang Z, Cui K, Bing Y et al (2016) Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water. Environ Sci Pollut Res 23(19):19570–19579

    Article  CAS  Google Scholar 

  • Longstreth DJ, Borkhsenious ON (2000) Root cell ultrastructure in developing aerenchyma tissue of three wetland species. Ann Bot 86(3):641–646

    Article  Google Scholar 

  • Martens DA, Johanson JB, Frankenberger WT (1992) Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci 153(1):53–61

    Article  CAS  Google Scholar 

  • Mentzer JL, Goodman RM, Balser TC (2006) Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie. Plant Soil 284(1–2):85–100

    Article  CAS  Google Scholar 

  • Miersch J, Tschimedbalshir M, Bärlocher F, Grams Y, Pierau B, Schierhorn A, Krauss GJ (2001) Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia. Mycol Res 105(7):883–889

    Article  CAS  Google Scholar 

  • Mitchell C, McNevin D (2001) Alternative analysis of BOD removal in subsurface flow constructed wetlands employing Monod kinetics. Water Res 35(5):1295–1303

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, Hoboken, p 582

    Google Scholar 

  • Morvannou A, Choubert JM, Vanclooster M, Molle P (2014) Modeling nitrogen removal in a vertical flow constructed wetland treating directly domestic wastewater. Ecol Eng 70:379–386

    Article  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    Article  CAS  Google Scholar 

  • Neori A, Reddy KR, Číšková-Končalová H, Agami M (2000) Bioactive chemicals and biological—biochemical activities and their functions in rhizospheres of wetland plants. Bot Rev 66(3):350–378

    Article  Google Scholar 

  • Niemi RM, Vepsäläinen M, Wallenius K, Simpanen S, Alakukku L, Pietola L (2005) Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field. Appl Soil Ecol 30(2):113–125

    Article  Google Scholar 

  • Niveditha TMA (2019) Constructed wet lands—An efficient green technology for environmental sustainability—An over view. Int J Basic Appl Res 9(4):528–536

    Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36(4):667–675

    Article  CAS  Google Scholar 

  • Oved T, Shaviv A, Goldrath T, Mandelbaum RT, Minz D (2001) Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 67:3426–3433

    Article  CAS  Google Scholar 

  • Pedescoll A, Corzo A, Álvarez E, García J, Puigagut J (2011) The effect of primary treatment and flow regime on clogging development in horizontal subsurface flow constructed wetlands: an experimental evaluation. Water Res 45(12):3579–3589

    Article  CAS  Google Scholar 

  • Peralta RM, Ahn C, Gillevet PM (2013) Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands. Sci Total Environ 443:725–732

    Article  CAS  Google Scholar 

  • Puigagut J, Caselles-Osorio A, Vaello N, García J (2008) Fractionation, biodegradability and particle-size distribution of organic matter in horizontal subsurface-flow constructed wetlands. In: Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Springer, Dordrecht, pp 289–297

    Chapter  Google Scholar 

  • Radcliffe JC (2006) Future directions for water recycling in Australia. Desalination 187(1–3):77–87

    Article  CAS  Google Scholar 

  • Reboreda R, Caçador I (2008) Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Mar Environ Res 65(1):77–84

    Article  CAS  Google Scholar 

  • Rowan AK, Snape JR, Fearnside D, Barer MR, Curtis TP, Head IM (2003) Composition and diversity of ammonia-oxidizing bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol Ecol 43:195–206

    Article  CAS  Google Scholar 

  • Saunders AM, Larsen P, Nielsen PH (2013) Comparison of nutrient-removing microbial communities in activated sludge from full-scale MBRs and conventional plants. Water Sci Technol 68(2):366–371

    Article  CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues and future prospects. Rev Environ Contam Toxicol 249:71–131

    Google Scholar 

  • Shackle VJ, Freeman C, Reynolds B (2000) Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biol Biochem 32(13):1935–1940

    Article  CAS  Google Scholar 

  • Shelef O, Gross A, Rachmilevitch S (2013) Role of plants in a constructed wetland: current and new perspectives. Water 5(2):405–419

    Article  Google Scholar 

  • Sleytr K, Tietz A, Langergraber G, Haberl R, Sessitsch A (2009) Diversity of abundant bacteria in subsurface vertical flow constructed wetlands. Ecol Eng 35(6):1021–1025

    Article  Google Scholar 

  • Steenwerth KL, Jackson LE, Carlisle EA, Scow KM (2006) Microbial communities of a native perennial bunchgrass do not respond consistently across a gradient of land-use intensification. Soil Biol Biochem 38(7):1797–1811

    Article  CAS  Google Scholar 

  • Tanner CC, Headley TR (2011) Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol Eng 37(3):474–486

    Article  Google Scholar 

  • Tian T, Tam NF, Zan Q, Cheung SG, Shin PK, Wong YS et al (2017) Performance and bacterial community structure of a 10-years old constructed mangrove wetland. Mar Pollut Bull 124(2):1096–1105

    Article  CAS  Google Scholar 

  • Tram Vo P, Ngo HH, Guo W, Zhou JL, Nguyen PD, Listowski A, Wang XC (2014) A mini-review on the impacts of climate change on wastewater reclamation and reuse. Sci Total Environ 494–495:9–17

    Article  CAS  Google Scholar 

  • Truu J, Nurk K, Juhanson J, Mander U (2005) Variation of microbiological parameters within planted soil filter for domestic wastewater treatment. J Environ Sci Health 40(6–7):1191–1200

    Article  CAS  Google Scholar 

  • Truu M, Juhanson J, Truu J (2009) Microbial biomass, activity and community composition in constructed wetlands. Sci Total Environ 407(13):3958–3971

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (US EPA), National Risk Management Research Laboratory, US Agency for International Development (2012) 2012 guidelines for water reuse, EPA/600/R-12/618. US Environmental Protection Agency, Office of Wastewater Management, Washington, DC

    Google Scholar 

  • Valipour A, Ahn YH (2016) Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review. Environ Sci Pollut Res 23(1):180–197

    Article  CAS  Google Scholar 

  • Vera L, Martel G, Márquez M (2013) Two years monitoring of the natural system for wastewater reclamation in Santa Lucía, Gran Canaria Island. Ecol Eng 50:21–30

    Article  Google Scholar 

  • Wang Q, Xie H, Ngo HH, Guo W, Zhang J, Liu C et al (2016) Microbial abundance and community in subsurface flow constructed wetland microcosms: role of plant presence. Environ Sci Pollut Res 23(5):4036–4045

    Article  CAS  Google Scholar 

  • Weber KP, Legge RL (2011) Dynamics in the bacterial community-level physiological profiles and hydrological characteristics of constructed wetland mesocosms during start-up. Ecol Eng 37(5):666–677

    Article  Google Scholar 

  • Wetzel RG (1993) Constructed wetlands: scientific foundations are critical. Constructed wetlands for water quality improvement. CRC Press, Boca Raton, pp 3–7

    Google Scholar 

  • Wiessner A, Kappelmeyer U, Kuschk P, Kästner M (2005) Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland. Water Res 39(19):4643–4650

    Article  CAS  Google Scholar 

  • World Bank Group (2013) Wastewater reuse. http://go.worldbank.org/7K5VBGLQ70. Accessed 10 Aug 2016

  • World Health Organization (WHO) (2006) WHO guidelines for the safe use of wastewater, excreta and greywater, Policy and regulatory aspects, vol 1. World Health Organization, Geneva

    Google Scholar 

  • Wu J, Zhang J, Jia W, Xie H, Gu RR, Li C, Gao B (2009) Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater. Bioresour Technol 100(12):2910–2917

    Article  CAS  Google Scholar 

  • Wu Y, Li T, Yang L (2012) Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: a review. Bioresour Technol 107:10–18

    Article  CAS  Google Scholar 

  • Wu Q, Hu Y, Li S, Peng S, Zhao H (2016) Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement. Bioresour Technol 211:451–456

    Article  CAS  Google Scholar 

  • Xiong J, Guo G, Mahmood Q, Yue M (2011) Nitrogen removal from secondary effluent by using integrated constructed wetland system. Ecol Eng 37(4):659–662

    Article  Google Scholar 

  • Yovo F, Dimon B, Suanon F, Aina M, Agani IC, Wotto VD, Togbe AFC (2016) Treatment performance of an autonomous gray water treatment system (SAUTEG) with the macrophytes Thalia geniculata. Am J Environ Protect 5(6):187–198

    Article  Google Scholar 

  • Zaman MDHJ, Di HJ, Cameron KC, Frampton CM (1999) Gross nitrogen mineralization and nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potentials. Biol Fertil Soils 29(2):178–186

    Article  CAS  Google Scholar 

  • Zhang CB, Huang LN, Wong MH, Zhang JT, Zhai CJ, Lan CY (2006) Characterization of soil physico-chemical and microbial parameters after revegetation near Shaoguan Pb/Zn smelter, Guangdong, PR China. Water Air Soil Pollut 177(1–4):81–101

    Article  CAS  Google Scholar 

  • Zhang CB, Wang J, Liu WL, Zhu SX, Ge HL, Chang SX et al (2010) Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol Eng 36(1):62–68

    Article  Google Scholar 

  • Zhang CB, Liu WL, Wang J, Chen T, Yuan QQ, Huang CC et al (2011a) Plant functional group richness-affected microbial community structure and function in a full-scale constructed wetland. Ecol Eng 37(9):1360–1368

    Article  Google Scholar 

  • Zhang TT, Wang LL, He ZX, Zhang D (2011b) Growth inhibition and biochemical changes of cyanobacteria induced by emergent macrophyte Thalia dealbata roots. Biochem Syst Ecol 39(2):88–94

    Article  CAS  Google Scholar 

  • Zhang D, Wang C, Zhang L, Xu D, Liu B, Zhou Q, Wu Z (2016) Structural and metabolic responses of microbial community to sewage-borne chlorpyrifos in constructed wetlands. J Environ Sci 44:4–12

    Article  Google Scholar 

  • Zhi E, Song Y, Duan L, Yu H, Peng J (2015) Spatial distribution and diversity of microbial community in large-scale constructed wetland of the Liao river conservation area. Environ Earth Sci 73(9):5085–5094

    Article  Google Scholar 

  • Zhong F, Wu J, Dai Y, Yang L, Zhang Z, Cheng S, Zhang Q (2015) Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration. Appl Microbiol Biotechnol 99(3):1499–1512

    Article  CAS  Google Scholar 

  • Zhu S, Huang X, Ho S-H, Wang L, Yang J (2017) Effect of plant species compositions on performance of lab-scale constructed wetland through investigating photosynthesis and microbial communities. Bioresour Technol 229:196–192

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Department of Environmental Science, Babasaheb Bhimrao Ambedkar University for providing infrastructural facility and University Grants Commission (UGC), New Delhi, India for financial assistance as Junior Research Fellowship (Ref. no. 3525/SC/NET-JULY 2016) to the first author of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Pratap, B., Dubey, D., Dutta, V. (2020). Microbial Communities in Constructed Wetland Microcosms and Their Role in Treatment of Domestic Wastewater. In: Bharagava, R. (eds) Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-15-1390-9_14

Download citation

Publish with us

Policies and ethics