Skip to main content
Log in

Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Horizontal subsurface flow constructed wetlands (HSSF CWs) with and without redox manipulation by front aeration were operated to treat mechanically pretreated wastewater from a nearby wastewater treatment plant. Polymerase chain reaction-denaturing gradient gel electrophoresis and 454-pyrosequencing were used to characterize the shifts in bacterial community diversity and composition in response to front aeration in the HSSF CWs. Both techniques revealed similar bacterial diversity between the HSSF CWs with (ACW) and without front aeration (NACW). Differences in microbial functional groups between the ACW and the NACW substrate samples were identified with 454-pyrosequencing. Nitrite-oxidizing bacteria (Nitrospira) and ammonia-oxidizing bacteria (Nitrosomonas) had much higher abundances in the ACW, whereas more sequences related to sulfate-reducing bacteria and anaerobic sulfur-oxidizing bacteria (genera Sulfuricella, Sulfuritalea, and Sulfuricurvum) were detected in the NACW. Removal efficiencies for NH4 +–N, PO4 3−–P and chemical oxygen demand in the ACW were 48.7 ± 15.5, 70.2 ± 13.5, and 82.0 ± 6.4 %, respectively, whereas the removal efficiencies for these parameters in the NACW were 10.3 ± 14.0, 53.1 ± 18.9, and 68.8 ± 10.7 %, respectively. In the ACW, the stimulation of nitrification via front aeration supplied more NO2 –N and NO3 –N to the subsequent denitrification process than in the NACW, resulting in higher total inorganic nitrogen removal efficiency. The differences in treatment efficiencies between the ACW and the NACW could be partially explained by the different bacterial community compositions in the two CWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn YH (2006) Sustainable nitrogen elimination biotechnologies: a review. Process Biochem 41(8):1709–1721

    Article  CAS  Google Scholar 

  • Akratos CS, Tsihrintzis VA (2007) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 29(2):173–191

    Article  Google Scholar 

  • Andreote FD, Jiménez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F, Fasanella CC, Lopez MV, Baena S, Taketani RG (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS One 7(6):e38600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ansola G, Arroyo P, Sáenz de Miera LE (2014) Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands. Sci Total Environ 473:63–71

    Article  PubMed  Google Scholar 

  • Bäckman JS, Hermansson A, Tebbe CC, Lindgren PE (2003) Liming induces growth of a diverse flora of ammonia-oxidising bacteria in acid spruce forest soil as determined by SSCP and DGGE. Soil Biol Biochem 35(10):1337–1347

    Article  Google Scholar 

  • Baptista J, Donnelly T, Rayne D, Davenport R (2003) Microbial mechanisms of carbon removal in subsurface flow wetlands. Water Sci Technol 48(5):127–134

    CAS  PubMed  Google Scholar 

  • Bezbaruah AN, Zhang TC (2005) Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland. Biotechnol Bioeng 89(3):308–318

    Article  CAS  PubMed  Google Scholar 

  • Bock E, Schmidt I, Stüven R, Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol 163(1):16–20

    Article  CAS  Google Scholar 

  • Borin M, Salvato M (2012) Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecol Eng 46:34–42

    Article  Google Scholar 

  • Calheiros CSC, Duque AF, Moura A, Henriques IS, Correia A, Rangel AOSS, Castro PML (2009) Substrate effect on bacterial communities from constructed wetlands planted with Typha latifolia treating industrial wastewater. Ecol Eng 35(5):744–753

    Article  Google Scholar 

  • Calheiros CSC, Teixeira A, Pires C, Franco AR, Duque AF, Crispim LFC, Moura SC, Castro PML (2010) Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing. Water Res 44(17):5032–5038

    Article  CAS  PubMed  Google Scholar 

  • Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4(6):458–468

    Article  CAS  PubMed  Google Scholar 

  • Caselles-Osorio A, García J (2007) Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands. Sci Total Environ 378(3):253–262

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Reddy GB (2010) Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresour Technol 101(4):1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK, Stein OR (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35(6):987–1004

    Article  Google Scholar 

  • Faulwetter JL, Burr MD, Parker AE, Stein OR, Camper AK (2013) Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms. Microb Ecol 65(1):111–127

    Article  CAS  PubMed  Google Scholar 

  • Figueras JB, Garcia-Gil LJ, Abella CA (1997) Phylogeny of the genus Chlorobium based on 16S rDNA sequence. FEMS Microbiol Lett 152(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Fuerst JA (1995) The Planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology 141(7):1493–1506

    Article  CAS  PubMed  Google Scholar 

  • García J, Aguirre P, Barragán J, Mujeriego R, Matamoros V, Bayona JM (2005) Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands. Ecol Eng 25(4):405–418

    Article  Google Scholar 

  • Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006) Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol 72(4):2637–2643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ibekwe AM, Grieve CM, Lyon SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl Environ Microbiol 69(9):5060–5069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenssen PD, Mæhlum T, Krogstad T, Vråle L (2005) High performance constructed wetlands for cold climates. J Environ Sci Health 40(6–7):1343–1353

    Article  CAS  Google Scholar 

  • Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NFY (2013) Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb Ecol 66(1):96–104

    Article  PubMed  Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Röser A, Koops HP, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64(8):3042–3051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadlec R, Knight R (1996) Treatment wetlands. Lewis, Boca Raton

    Google Scholar 

  • Kellermann C, Griebler C (2009) Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int J Syst Evol Microbiol 59(3):583–588

    Article  CAS  PubMed  Google Scholar 

  • Knight RL, Kadlec RH, Ohlendorf HM (1999) The use of treatment wetlands for petroleum industry effluents. Environ Sci Technol 33(7):973–980

    Article  CAS  Google Scholar 

  • Knight RL, Payne VWE Jr, Borer RE, Clarke RA Jr, Pries JH (2000) Constructed wetlands for livestock wastewater management. Ecol Eng 15(1–2):41–55

    Article  Google Scholar 

  • Kodama Y, Watanabe K (2004) Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol 54(6):2297–2300

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Fukui M (2010) Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 60(12):2862–2866

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Fukui M (2011) Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 61(7):1651–1655

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Stienstra AW, Heilig GHJ, Stephen JR, Woldendorp JW (2000) Molecular analysis of ammonia-oxidising bacteria in soil of successional grasslands of the Drentsche A (The Netherlands). FEMS Microbiol Ecol 31(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Li RY, Fang HH (2008) Hydrogen production characteristics of photoheterotrophic Rubrivivax gelatinosus L31. Int J Hydrog Energy 33(3):974–980

    Article  CAS  Google Scholar 

  • Li F, Lu L, Zheng X, Zhang X (2014) Three-stage horizontal subsurface flow constructed wetlands for organics and nitrogen removal: effect of aeration. Ecol Eng 68:90–96

    Article  Google Scholar 

  • Luederitz V, Eckert E, Lange-Weber M, Lange A, Gersberg RM (2001) Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecol Eng 18(2):157–171

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65(4):1721–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer B, Kuever J (2007) Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 73(23):7664–7679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neef A, Amann R, Schlesner H, Schleifer KH (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144(12):3257–3266

    Article  CAS  PubMed  Google Scholar 

  • Okabe S, Ito T, Sugita K, Satoh H (2005) Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms. Appl Environ Microbiol 71(5):2520–2529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osaka T, Kimura Y, Otsubo Y, Suwa Y, Tsuneda S, Isaka K (2012) Temperature dependence for anammox bacteria enriched from freshwater sediments. J Biosci Bioeng 114(4):429–434

    Article  CAS  PubMed  Google Scholar 

  • Park HI, Choi YJ, Pak D (2005) Autohydrogenotrophic denitrifying microbial community in a glass beads biofilm reactor. Biotechnol Lett 27(13):949–953

    Article  CAS  PubMed  Google Scholar 

  • Peralta RM, Ahn C, Gillevet PM (2012) Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands. Sci Total Environ 443:725–732

    Article  PubMed  Google Scholar 

  • Philippot L, Hallin S and Schloter M (2007) Advances in agronomy. In: Donald, L.S. (ed) Advances in agronomy. Academic Press, pp 249–305

  • Portune KJ, Pérez MC, Álvarez-Hornos FJ, Gabaldón C (2014) Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5868-3

    PubMed Central  Google Scholar 

  • Ramond JB, Welz PJ, Cowan DA, Burton SG (2012) Microbial community structure stability, a key parameter in monitoring the development of constructed wetland mesocosms during start-up. Res Microbiol 163(1):28–35

    Article  PubMed  Google Scholar 

  • Rodgers M, Zhan XM, Gallagher B (2003) A pilot plant study using a vertically moving biofilm process to treat municipal wastewater. Bioresour Technol 89(2):139–143

    Article  CAS  PubMed  Google Scholar 

  • Saunders AM, Larsen P, Nielsen PH (2013) Comparison of nutrient-removing microbial communities in activated sludge from full-scale MBRs and conventional plants. Water Sci Technol 68(2):366–371

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer KH (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 62(12):4641–4647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schreier HJ, Mirzoyan N, Saito K (2010) Microbial diversity of biological filters in recirculating aquaculture systems. Curr Opin Biotechnol 21(3):318–325

    Article  CAS  PubMed  Google Scholar 

  • Shao MF, Zhang T, Fang HH (2010) Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88(5):1027–1042

    Article  CAS  PubMed  Google Scholar 

  • Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21(8):1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Stein OR, Hook PB (2005) Temperature, plants, and oxygen: how does season affect constructed wetland performance? J Environ Sci Health 40(6–7):1331–1342

    Article  CAS  Google Scholar 

  • Tietz A, Hornek R, Langergraber G, Kreuzinger N, Haberl R (2007) Diversity of ammonia oxidising bacteria in a vertical flow constructed wetland. Water Sci Technol 56(3):241–247

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Hata K (1999) Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. Water Res 33(12):2888–2892

    Article  CAS  Google Scholar 

  • van Niftrik L, Jetten MS (2012) Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 76(3):585–596

    Article  PubMed Central  PubMed  Google Scholar 

  • Vartapetian B, Jackson M (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    Article  CAS  Google Scholar 

  • Vymazal J (2002) The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol Eng 18(5):633–646

    Article  Google Scholar 

  • Vymazal J (2011) Long-term performance of constructed wetlands with horizontal sub-surface flow: ten case studies from the Czech Republic. Ecol Eng 37(1):54–63

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Hu M, Xia Y, Wen X, Ding K (2012a) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 78(19):7042–7047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW (2012b) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol 78(23):8264–8271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Werker A, Dougherty J, McHenry J, Van Loon W (2002) Treatment variability for wetland wastewater treatment design in cold climates. Ecol Eng 19(1):1–11

    Article  Google Scholar 

  • Xia S, Duan L, Song Y, Li J, Piceno YM, Andersen GL, Alvarez-Cohen L, Moreno-Andrade I, Huang C-L, Hermanowicz SW (2010) Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ Sci Technol 44(19):7391–7396

    Article  CAS  PubMed  Google Scholar 

  • Yao F, Shen GX, Li XL, Li HZ, Hu H, Ni WZ (2011) A comparative study on the potential of oxygen release by roots of selected wetland plants. Phys Chem Earth 36(9–11):475–478

    Article  Google Scholar 

  • Yoon DN, Park SJ, Kim SJ, Jeon CO, Chae JC, Rhee SK (2010) Isolation, characterization, and abundance of filamentous members of Caldilineae in activated sludge. J Microbiol 48(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wang H, Liu J, Wang Q, Shen T, Guo W, Wang R (2012) Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary. Eur J Soil Biol 49:12–21

    Article  Google Scholar 

  • Zhang LY, Zhang L, Liu YD, Shen YW, Liu H, Xiong Y (2010) Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination 250(3):915–920

    Article  CAS  Google Scholar 

  • Zhang T, Shao MF, Ye L (2012) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong F, Gao Y, Yu T, Zhang Y, Xu D, Xiao E, He F, Zhou Q, Wu Z (2011) The management of undesirable cyanobacteria blooms in channel catfish ponds using a constructed wetland: contribution to the control of off-flavor occurrences. Water Res 45(19):6479–6488

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (51108335 and 51278355), the Natural Science Foundation of Jiangsu province (BK20130398), and a project of the National Major Program of Science and Technology (2012ZX07103-004). We thank Sarina J. Ergas for critical reading of the manuscript. We are grateful to Liang Wu, Yuqin Feng, and other members of the research group for their assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiping Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, F., Wu, J., Dai, Y. et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration. Appl Microbiol Biotechnol 99, 1499–1512 (2015). https://doi.org/10.1007/s00253-014-6063-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6063-2

Keywords

Navigation