Skip to main content

Energy Absorption of Highly Ductile Materials

  • Chapter
  • First Online:
Elastoplastic Behavior of Highly Ductile Materials
  • 2957 Accesses

Abstract

The energy absorption of highly ductile materials and characteristics of energy-absorbing components are presented first, and then both horizontally compressed ring and axial compression of round tube are given especially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olabi AG, Morris E, Hashmi MSJ (2007) Metallic tube type energy absorbers: a synopsis. Thin Walled Struct 45:706–726

    Article  Google Scholar 

  2. Niknejad A, Liaghat GH, Moslemi Naeini H, Behravesh AH (2010) A theoretical formula for predicting the instantaneous folding force of the first fold in a single cell hexagonal honeycomb under axial loading. Proc Inst Mech Eng C J Mech Eng Sci 224, 2308–2315

    Google Scholar 

  3. Niknejad A, Liaghat GH, Moslemi Naeini H, Behravesh AH (2010) Experimental and theoretical investigation of the first fold creation in thin-walled columns. Acta Mech Solida Sin 23:353–360

    Article  Google Scholar 

  4. Niknejad A, Liaghat GH, Moslemi Naeini H, Behravesh AH (2011) Theoretical and experimental studies of the instantaneous folding force of the polyurethane foam-filled square honeycombs. Mater Des 32:69–75

    Article  Google Scholar 

  5. Niknejad A, Elahi SA, Liaghat GH (2012) Experimental investigation on the lateral compression in the foam-filled circular tubes. Mater Des 36:24–34

    Article  Google Scholar 

  6. Reid SR, Reddy TY (1978) Effect of strain hardening on the lateral compression of tubes between rigid plates. Int J Solid Struct 14:213–225

    Article  Google Scholar 

  7. Reddy TY, Reid SR, Carney JF, Veillette JR (1987) Crushing analysis of braced metal rings using the equivalent structure technique. Int J Mech Sci 29:655–668

    Article  Google Scholar 

  8. Avalle M, Goglio L (1997) Static lateral compression of aluminum tubes: strain gauge measurements and discussion of theoretical models. J Strain Anal Eng 32:335–343

    Article  Google Scholar 

  9. Leu DK (1999) Finite-element simulation of the lateral compression of aluminum tube between rigid plates. Int J Mech Sci 41:621–638

    Article  Google Scholar 

  10. Nemat-Alla M (2003) Reproducing hoop stress–strain behavior for tubular material using lateral compression test. Int J Mech Sci 45:605–621

    Article  Google Scholar 

  11. Gupta NK, Sekhon GS, Gupta PK (2005) Study of lateral compression of round metallic tubes. Thin Walled Struct 43:895–922

    Article  Google Scholar 

  12. Morris E, Olabi AG, Hashmi MSJ (2007) Lateral crushing of circular and non-circular tube systems under quasi-static conditions. J Mater Process Tech 191:132–135

    Article  Google Scholar 

  13. Celentano DJ, Chaboche JL (2007) Experimental and numerical characterization of damage evolution in steels. Int J Plast 23:1739–1762

    Article  Google Scholar 

  14. Olabi AG, Morris E, Hashmi MSJ, et al. (2008) Optimised design of nested circular tube energy absorbers under lateral impact loading, Int J Mech Sci 50:104–116

    Article  Google Scholar 

  15. Olabi AG, Morris E, Hashmi MSJ, Gilchrist MD (2008) Optimized design of nested oblong tube energy absorbers under lateral impact loading. Int J Impact Eng 35:10–26

    Article  Google Scholar 

  16. Zeinoddini M, Harding JE, Parke GAR (2008) Axially pre-loadedsteel tubes subjected to lateral impacts (a numerical simulation). Int J Impact Eng 35:1267–1279

    Article  Google Scholar 

  17. Zuraida A, Khalid AA, Ismail AF (2007) Performance of hybridfilament wound composite tubes subjected to quasi static indentation. Mater Des 28:71–77

    Article  Google Scholar 

  18. Mcdevitti TJ, Simmonds JG (2003) Crush of an elastic-plastic ring between rigid plates with and without unloading. J Appl Mech 70:799–808

    Article  Google Scholar 

  19. Lee KS, Kim SK, Yang IY (2008) The energy absorption control characteristics of Al thin-walled tube under quasi-static axial compression. J Mater Process Tech 201:445–449

    Article  Google Scholar 

  20. Lipa S, Kotełko M (2013) Lateral impact of tubular structure—theoretical and experimental analysis. Part 1: investigation of single tube. J Theor Appl Mech 51(4):873–882

    Google Scholar 

  21. Baroutaji A, Morris E, Olabi AG (2014) Quasi-static response andmulti-objective crashworthiness optimization of oblong tube under lateral loading. Thin Walled Struct 82:262–277

    Article  Google Scholar 

  22. Baroutaji A, Gilchrist MD, Smyth D, Olabi AG (2015) Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading. Thin Walled Struct 86:121–131

    Article  Google Scholar 

  23. Yin H, Wen G, Liu Z, Qing Q (2014) Crash worthiness optimization design for foam-filled multi-cell thin-walled structures. Thin Walled Struct 73:8–17

    Article  Google Scholar 

  24. Zahiri-Hashemi R, Kheyroddin A, Shayanfar MA (2014) Effect of inelastic behavior on the code-based seismic lateral force pattern of buckling restrained braced frames. Arab J Sci Eng 39:8525–8536

    Article  Google Scholar 

  25. Gantes CJ, Livanou MA, Avraam TP (2014) New insight into interaction of buckling modes with stable post-buckling response. Arab J Sci Eng 39:8559–8572

    Article  Google Scholar 

  26. Xie S, Zhou H (2014) Impact characteristics of a composite energy absorbing bearing structure for railway vehicles. Comp, B 67:455–463

    Article  Google Scholar 

  27. Yu TX, Xue P (2010) Engineering plastic mechanics. Higher Education Press, Beijing, China

    Google Scholar 

  28. Zheng M, Zhao Y, Teng H, Hu J, Yu L (2015) Elastic limit analysis for elliptical and circular tubes under lateral tension. Arab J Sci Eng 40:1727–1732

    Article  Google Scholar 

  29. Timoshenko S (1955) Strength of materials, part 1, elementary theory and problems, 3rd edn. Stanford University, Stanford, USA

    Google Scholar 

  30. Alexander JM (1960) An approximate analysis of the collapse of thin cylindrical shells under axial load. Quart J Mech Appl Math 13:10–15

    Article  MathSciNet  Google Scholar 

  31. Zhang TG, Yu TX (1989) A note on a ″velocity sensitive″ energy-absorbing structure. Int J Impact Eng 8:43–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maosheng Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, M., Yin, Z., Teng, H., Liu, J., Wang, Y. (2019). Energy Absorption of Highly Ductile Materials. In: Elastoplastic Behavior of Highly Ductile Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-0906-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0906-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0905-6

  • Online ISBN: 978-981-15-0906-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics