Skip to main content
Log in

Elastic Limit Analysis for Elliptical and Circular Tubes Under Lateral Tension

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The elastic limit analysis for elliptical and circular tubes under lateral force is conducted in the present paper, and elastic–perfect plastic material model is employed. An analytical expression for describing the elastic limit load of elliptical and circular tubes under lateral force is obtained. It shows that the critical load for elliptical and circular tubes under lateral force increases with the plastic yielding strength of the tube material, the ratio of the wall thickness to radius, the wall thickness and the length of the tube, as well as the degree of deviation from circular tube monotonously. The experimental results from available literature for both steel and aluminum tubes are cited to verify the proposed expression, and it shows that the expression reflects the loading capacity of elliptical and circular tubes quite well, which indicates the proposed expression is a reasonable formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

mn :

Cross-sectional line at symmetric position of structure

P :

Tensile force

M 0 :

Bending moment on the cross section mn

U :

Strain energy of the one-quarter elliptical tube in loading

m 1 n 1 :

A cross-sectional line at general position of structure

\({\phi}\) :

Directional angle of a cross section m 1 n 1 with respect to the cross section mn

M :

Bending moment on the cross section m 1 n 1

b :

The semi-length of the shorter axis of the elliptical tube

a :

The semi-length of the longer axis of the elliptical tube

E :

Elasticity modulus of the tube material

I z :

Moment of inertia

ds :

Increment on the elliptical arc

R :

Radius of the corresponding circular tube

\({\zeta}\) :

Degree of deviation from circular tube

M e :

Plastic bending moment of a sheet

t :

Wall thickness of tube

l :

Length of tube or width of tube sheet

\({\sigma_{\rm s}}\) :

Plastic yielding strength of the tube material with elastic–perfect plastic property

P e :

Critical value of tensile force P

P Ce :

Critical load for a circular tube under lateral tension

\({t\cdot l}\) :

Cross-sectional area of the tube sheet

References

  1. Olabi A.G., Morris E., Hashmi M.S.J.: Metallic tube type energy absorbers: a synopsis. Thin Walled Struct. 45, 706–726 (2007)

    Article  Google Scholar 

  2. Niknejad A., Liaghat G.H., Moslemi Naeini H., Behravesh A.H.: A theoretical formula for predicting the instantaneous folding force of the first fold in a single cell hexagonal honeycomb under axial loading. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 224, 2308–2315 (2010)

    Article  Google Scholar 

  3. Niknejad A., Liaghat G.H., Moslemi Naeini H., Behravesh A.H.: Experimental and theoretical investigation of the first fold creation in thin-walled columns. Acta Mech. Solida Sin. 23, 353–360 (2010)

    Article  Google Scholar 

  4. Niknejad A., Liaghat G.H., Moslemi Naeini H., Behravesh A.H.: Theoretical and experimental studies of the instantaneous folding force of the polyurethane foam-filled square honeycombs. Mater. Des. 32, 69–75 (2011)

    Article  Google Scholar 

  5. Niknejad A., Elahi S.A., Liaghat G.H.: Experimental investigation on the lateral compression in the foam-filled circular tubes. Mater. Des. 36, 24–34 (2012)

    Article  Google Scholar 

  6. Reid S.R., Reddy T.Y.: Effect of strain hardening on the lateral compression of tubes between rigid plates. Int. J. Solid Struct. 14, 213–225 (1978)

    Article  Google Scholar 

  7. Reddy T.Y., Reid S.R., Carney J.F., Veillette J.R.: Crushing analysis of braced metal rings using the equivalent structure technique. Int. J. Mech. Sci. 29, 655–668 (1987)

    Article  Google Scholar 

  8. Avalle M., Goglio L.: Static lateral compression of aluminum tubes: strain gauge measurements and discussion of theoretical models. J. Strain Anal. Eng. 32, 335–343 (1997)

    Article  Google Scholar 

  9. Leu D.K.: Finite-element simulation of the lateral compression of aluminum tube between rigid plates. Int. J. Mech. Sci. 41, 621–638 (1999)

    Article  MATH  Google Scholar 

  10. Nemat-Alla M.: Reproducing hoop stress–strain behavior for tubular material using lateral compression test. Int. J. Mech. Sci. 45, 605–621 (2003)

    Article  Google Scholar 

  11. Gupta N.K., Sekhon G.S., Gupta P.K.: Study of lateral compression of round metallic tubes. Thin Walled Struct. 43, 895–922 (2005)

    Article  Google Scholar 

  12. Morris E., Olabi A.G., Hashmi M.S.J.: Lateral crushing of circular and non-circular tube systems under quasi-static conditions. J. Mater. Process. Technol. 191, 132–135 (2007)

    Article  Google Scholar 

  13. Celentano D.J., Chaboche J.L.: Experimental and numerical characterization of damage evolution in steels. Int. J. Plast. 23, 1739–1762 (2007)

    Article  MATH  Google Scholar 

  14. Olabi A.G., Morris E., Hashmi M.S.J. et al.: Optimised design of nested circular tube energy absorbers under lateral impact loading. Int. J. Mech. Sci. 50, 104–116 (2008)

    Article  Google Scholar 

  15. Olabi A.G., Morris E., Hashmi M.S.J., Gilchrist M.D.: Optimized design of nested oblong tube energy absorbers under lateral impact loading. Int. J. Impact Eng. 35, 10–26 (2008)

    Article  Google Scholar 

  16. Zeinoddini M., Harding J.E., Parke G.A.R.: Axially pre-loaded steel tubes subjected to lateral impacts (a numerical simulation). Int. J. Impact Eng. 35, 1267–1279 (2008)

    Article  Google Scholar 

  17. Zuraida A., Khalid A.A., Ismail A.F.: Performance of hybrid filament wound composite tubes subjected to quasi static indentation. Mater. Des. 28, 71–77 (2007)

    Article  Google Scholar 

  18. Mcdevitti T.J., Simmonds J.G.: Crush of an elastic-plastic ring between rigid plates with and without unloading. J. Appl. Mech. 70, 799–808 (2003)

    Article  Google Scholar 

  19. Lee K.S., Kim S.K., Yang I.Y.: The energy absorption control characteristics of Al thin-walled tube under quasi-static axial compression. J. Mater. Process. Technol. 201, 445–449 (2008)

    Article  Google Scholar 

  20. Lipa S., Kotełko M.: Lateral impact of tubular structure—theoretical and experimental analysis. Part 1: investigation of single tube. J. Theor. Appl. Mech. 51(4), 873–882 (2013)

    Google Scholar 

  21. Baroutaji A., Morris E., Olabi A.G.: Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading. Thin Walled Struct. 82, 262–277 (2014)

    Article  Google Scholar 

  22. Baroutaji A., Gilchrist M.D., Smyth D., Olabi A.G.: Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading. Thin Walled Struct. 86, 121–131 (2015)

    Article  Google Scholar 

  23. Yin H., Wen G., Liu Z., Qing Q.: Crash worthiness optimization design for foam-filled multi-cell thin-walled structures. Thin Walled Struct. 73, 8–17 (2014)

    Article  Google Scholar 

  24. Zahiri-Hashemi Rouzbeh, Kheyroddin Ali, Shayanfar Mohsen Ali: Effect of inelastic behavior on the code-based seismic lateral force pattern of buckling restrained braced frames. Arab. J. Sci. Eng. 39, 8525–8536 (2014)

    Article  Google Scholar 

  25. Gantes Charis J., Livanou Maria A., Avraam Tassos P.: New insight into interaction of buckling modes with stable post-buckling response. Arab. J. Sci. Eng. 39, 8559–8572 (2014)

    Article  Google Scholar 

  26. Xie S., Zhou H.: Impact characteristics of a composite energy absorbing bearing structure for railway vehicles. Compos. B 67, 455–463 (2014)

    Article  MathSciNet  Google Scholar 

  27. Timoshenko S.: Strength of Materials, Part 1, Elementary Theory and Problems, 3rd edn. Stanford University, Stanford (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Zhao, Y., Teng, H. et al. Elastic Limit Analysis for Elliptical and Circular Tubes Under Lateral Tension. Arab J Sci Eng 40, 1727–1732 (2015). https://doi.org/10.1007/s13369-015-1655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1655-4

Keywords

Navigation