Skip to main content

Greedily Remove k Links to Hide Important Individuals in Social Network

  • Conference paper
  • First Online:
Security and Privacy in Social Networks and Big Data (SocialSec 2019)

Abstract

Closeness centrality is a type of measure that usually used in social network analysis (SNA). For personal privacy, we study how to help important individuals avoid being detected by closeness centrality analysis. In this paper, we present an optimization problem of finding k edges removed to minimize leader node closeness value to hide leader. We consider this problem in the undirected graph and prove its NP-completeness by reduction from the Hamiltonian cycle problem. Hence, we propose a greedy algorithm with a \((1-\frac{1}{e})\) - approximation lower bound and design UpdateCloseness algorithm to reduce time cost by Breadth-First Search algorithm. Experimental results confirm the effectivity of our greedy scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10(2), 161–163 (1965)

    Article  Google Scholar 

  3. Bergamini, E., Borassi, M., Crescenzi, P., Marino, A., Meyerhenke, H.: Computing top-k closeness centrality faster in unweighted graphs. In: ALENEX, pp. 68–80. SIAM (2016)

    Google Scholar 

  4. Berno, B.: Network formation with closeness incentives. In: Naimzada, A.K., Stefani, S., Torriero, A. (eds.) Networks, Topology and Dynamics, vol. 613, pp. 95–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-68409-1_4

    Chapter  Google Scholar 

  5. Bisenius, P., Bergamin, E., Angriman, E., Meyerhenke, H.: Computing top-k closeness centrality in fully-dynamic graphs. In: ALENEX, pp. 21–35. SIAM (2018)

    Google Scholar 

  6. Borassi, M., Crescenzi, P., Marino, A.: Fast and simple computation of top-k closeness centralities. arXiv preprint arXiv:1507.01490 (2015)

  7. Chan, S.Y., Leung, I.X., Liò, P.: Fast centrality approximation in modular networks. In: CNIKM, pp. 31–38. ACM (2009)

    Google Scholar 

  8. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Computing classic closeness centrality, at scale. In: COSN, pp. 37–50. ACM (2014)

    Google Scholar 

  9. Crescenzi, P., Dangelo, G., Severini, L., Velaj, Y.: Greedily improving our own closeness centrality in a network. TKDD 11(1), 9 (2016)

    Article  Google Scholar 

  10. ERDdS, P., R&wi, A.: On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959)

    Google Scholar 

  11. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry, pp. 35–41 (1977)

    Google Scholar 

  12. Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(04), 565–573 (2003)

    Article  Google Scholar 

  13. Kas, M., Carley, K.M., Carley, L.R.: Incremental closeness centrality for dynamically changing social networks. In: ASONAM, pp. 1250–1258. ACM (2013)

    Google Scholar 

  14. Krebs, V.E.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)

    Google Scholar 

  15. Le Merrer, E., Le Scouarnec, N., Trédan, G.: Heuristical top-k: fast estimation of centralities in complex networks. Inf. Process. Lett. 114(8), 432–436 (2014)

    Article  MathSciNet  Google Scholar 

  16. Marchiori, M., Latora, V.: Harmony in the small-world. Phys. A Stat. Mech. Appl. 285(3–4), 539–546 (2000)

    Article  Google Scholar 

  17. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  18. Okamoto, K., Chen, W., Li, X.-Y.: Ranking of closeness centrality for large-scale social networks. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp. 186–195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69311-6_21

    Chapter  Google Scholar 

  19. Olsen, P.W., Labouseur, A.G., Hwang, J.H.: Efficient top-k closeness centrality search. In: ICDE, pp. 196–207. IEEE (2014)

    Google Scholar 

  20. Ressler, S.: Social network analysis as an approach to combat terrorism: past,present, and future research. Homel. Secur. Aff. 2(2) (2006)

    Google Scholar 

  21. Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. Technical report (2009)

    Google Scholar 

  22. Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: Gemsec: graph embedding with self clustering (2018)

    Google Scholar 

  23. Santos, E.E., Korah, J., Murugappan, V., Subramanian, S.: Efficient anytime anywhere algorithms for closeness centrality in large and dynamic graphs. In: IPDPSW, pp. 1821–1830. IEEE (2016)

    Google Scholar 

  24. Sariyuce, A.E., Kaya, K., Saule, E., Catalyurek, U.V.: Incremental algorithms for network management and analysis based on closeness centrality. arXiv preprint arXiv:1303.0422 (2013)

  25. Saxena, A., Gera, R., Iyengar, S.: A faster method to estimate closeness centrality ranking. arXiv preprint arXiv:1706.02083 (2017)

  26. Shaw, M.E.: Group structure and the behavior of individuals in small groups. J. Psychol. 38(1), 139–149 (1954)

    Article  Google Scholar 

  27. Takhteyev, Y., Gruzd, A., Wellman, B.: Geography of twitter networks. Soc. Netw. 34, 73–81 (2012)

    Article  Google Scholar 

  28. Ter Wal, A.L., Boschma, R.A.: Applying social network analysis in economic geography: framing some key analytic issues. Ann. Reg. Sci. 43(3), 739–756 (2009)

    Article  Google Scholar 

  29. Tong, H., Prakash, B.A., Eliassi-Rad, T., Faloutsos, M., Faloutsos, C.: Gelling, and melting, large graphs by edge manipulation. In: CIKM, pp. 245–254. ACM (2012)

    Google Scholar 

  30. Ufimtsev, V., Bhowmick, S.: An extremely fast algorithm for identifying high closeness centrality vertices in large-scale networks. In: IAAA, pp. 53–56. IEEE Press (2014)

    Google Scholar 

  31. Wang, D.E.J.: Fast approximation of centrality. Gr. Algorithms Appl. 5(5), 39 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Waniek, M., Michalak, T.P., Wooldridge, M.J., Rahwan, T.: Hiding individuals and communities in a social network. Nat. Hum. Behav. 2(2), 139 (2018)

    Article  Google Scholar 

  33. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(6684), 440 (1998)

    Article  Google Scholar 

  34. Yen, C.C., Yeh, M.Y., Chen, M.S.: An efficient approach to updating closeness centrality and average path length in dynamic networks. In: ICDM, pp. 867–876. IEEE (2013)

    Google Scholar 

  35. Zhou, B., Pei, J., Luk, W.: A brief survey on anonymization techniques for privacy preserving publishing of social network data. ACM Sigkdd Explor. Newsl. 10(2), 12–22 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, J., Wu, G., Duan, C., Ren, Y., Wang, Z. (2019). Greedily Remove k Links to Hide Important Individuals in Social Network. In: Meng, W., Furnell, S. (eds) Security and Privacy in Social Networks and Big Data. SocialSec 2019. Communications in Computer and Information Science, vol 1095. Springer, Singapore. https://doi.org/10.1007/978-981-15-0758-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0758-8_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0757-1

  • Online ISBN: 978-981-15-0758-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics