Skip to main content

The Impacts of Associative Memory Cells on Pathology

  • Chapter
  • First Online:
Associative Memory Cells: Basic Units of Memory Trace

Abstract

Neurological diseases and psychological disorders with cognition and mood impairment are more or less accompanied by memory deficits, since the capability and efficiency of normal cognitions, emotion, and behaviors are influenced by memory capacity. In psychiatric diseases, fear memory induced by acute severe stress is coupled with anxiety, the accumulated memories to negative outcomes induced by chronic mild stress may lead to anhedonia and low self-esteem in major depression, and weird memory is associated with schizophrenia. Memory deficits are also associated with neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The etiology and pathogenesis of memory deficits in neurological and psychiatric diseases remain unknown. As memory-relevant cognition and behaviors are based on the number and functional state of associative memory cells, it is hypothesized that these disease-associated memory deficits may be caused by pathological alternation in associative memory cells. Many genes and proteins in neurons are believed to result in these neurological and psychiatric diseases, and certain molecules accumulated in extracellular spaces are thought to deteriorate neuron encoding and synapse transmission. Associative memory cells are neuronal in nature prior to their recruitment for basic memory units; these intracellular and extracellular molecules that impair neurons may influence synapse innervations, synapse transmission efficiency, and spike-encoding capability at these associative memory cells and in turn take them to be abnormal. Pathological alternation in the synapse innervation, structural identity, and functional state of associative memory cells eventually results in memory deficits in these neurological and psychiatric diseases. Although this hypothesis needs to be tested experimentally, pathological alternations in neurons can be cited to associative memory cells. Here, the dysfunction of associative memory cells for memory deficits is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kandel ER, Pittenger C. The past, the future and the biology of memory storage. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1392):2027–52.

    Article  CAS  Google Scholar 

  2. Wang D, et al. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals. Front Cell Neurosci. 2015;9(320):1–12.

    Google Scholar 

  3. Wang JH, Cui S. Associative memory cells: formation, function and perspective. F1000Res. 2017;6:283.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wasserman EA, Miller RR. What’s elementary about associative learning? Annu Rev Psychol. 1997;48:573–607.

    Article  CAS  PubMed  Google Scholar 

  5. Beard RL. Trust and memory: organizational strategies, institutional conditions and trust negotiations in specialty clinics for Alzheimer’s disease. Cult Med Psychiatry. 2008;32(1):11–30.

    Article  PubMed  Google Scholar 

  6. Coutellier L, Usdin TB. Enhanced long-term fear memory and increased anxiety and depression-like behavior after exposure to an aversive event in mice lacking TIP39 signaling. Behav Brain Res. 2011;222(1):265–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Desmedt A, Marighetto A, Piazza PV. Abnormal fear memory as a model for posttraumatic stress disorder. Biol Psychiatry. 2015;78(5):290–7.

    Article  PubMed  Google Scholar 

  8. Orsini CA, Maren S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev. 2012;36(7):1773–802.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Parsons RG, Ressler KJ. Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci. 2013;16(2):146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramanan S, Kumar D. Prospective memory in Parkinson’s disease: a meta-analysis. J Int Neuropsychol Soc. 2013;19(10):1109–18.

    Article  PubMed  Google Scholar 

  11. Ramsey NF, et al. Excessive recruitment of neural systems subserving logical reasoning in schizophrenia. Brain. 2002;125(Pt 8):1793–807.

    Article  CAS  PubMed  Google Scholar 

  12. Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015;28(1):7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  14. Cotter D, et al. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry. 2002;51(5):377–86.

    Article  CAS  PubMed  Google Scholar 

  15. Liu B, Feng J, Wang J-H. Protein kinase C is essential for kainate-induced anxiety-related behavior and glutamatergic synapse upregulation in prelimbic cortex. CNS Neurosci Ther. 2014;20:982–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lloyd KG, et al. The gabaergic hypothesis of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 1989;13(3–4):341–51.

    Article  CAS  Google Scholar 

  17. Ma K, et al. Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. Transl Psychiatry. 2016;6(e910):1–10.

    CAS  Google Scholar 

  18. Maciag D, et al. Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol Psychiatry. 2010;67(5):465–70.

    Article  CAS  PubMed  Google Scholar 

  19. Xu A, Cui S, Wang J. Incoordination among subcellular compartments is associated to depression-like behavior induced by chronic mild stress. Int J Neuropsychopharmacol. 2015;19(5):pyv122.

    Article  PubMed Central  CAS  Google Scholar 

  20. Rajkowska G, et al. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology. 2007;32(2):471–82.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang F, et al. mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain. 2012;5(1):20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu Z, et al. GABAergic neurons in nucleus accumbens are correlated to resilience and vulnerability to chronic stress for major depression. Oncotarget. 2017;8(22):35933–45.

    PubMed  PubMed Central  Google Scholar 

  23. Feng J, et al. Barrel cortical neuron integrates triple associated signals for their memory through receiving epigenetic-mediated new synapse innervations. Cereb Cortex. 2017;27(12):5858–71.

    Article  PubMed  Google Scholar 

  24. Gao Z, et al. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory. Front Cell Neurosci. 2016;10(285):1–16.

    Google Scholar 

  25. Lei Z, et al. Synapse innervation and associative memory cell are recruited for integrative storage of whisker and odor signals in the barrel cortex through miRNA-mediated processes. Front Cell Neurosci. 2017;11(316):1–11.

    Google Scholar 

  26. Wang D, et al. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals. Front Cell Neurosci. 2015;9:320.

    PubMed  PubMed Central  Google Scholar 

  27. Wang J-H, et al. Both glutamatergic and gabaergic neurons are recruited to be associative memory cells. Biophys J. 2016;110(3):supplement 481a.

    Article  Google Scholar 

  28. Yan F, et al. Coordinated plasticity between barrel cortical glutamatergic and GABAergic neurons during associative memory. Neural Plast. 2016;2016(ID5648390):1–20.

    CAS  Google Scholar 

  29. Feng J, et al. Cell-specific plasticity associated with integrative memory of triple sensory signals in the barrel cortex. Oncotarget. 2018;9(57):30962–78.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guo R, et al. Associative memory extinction is accompanied by decayed plasticity at motor cortical neurons and persistent plasticity at sensory cortical neurons. Front Cell Neurosci. 2017;11(168):1–12.

    CAS  Google Scholar 

  31. Liu Y, et al. Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall. Oncotarget. 2017;8(56):95719–40.

    PubMed  PubMed Central  Google Scholar 

  32. Zhao X, et al. Coordinated plasticity among glutamatergic and GABAergic neurons and synapses in the barrel cortex is correlated to learning efficiency. Front Cell Neurosci. 2017;11(221):1–12.

    Google Scholar 

  33. Das T, Hwang JJ, Poston KL. Episodic recognition memory and the hippocampus in Parkinson’s disease: a review. Cortex. 2019;113:191–209.

    Article  PubMed  Google Scholar 

  34. Kahle PJ, et al. Physiology and pathophysiology of alpha-synuclein. Cell culture and transgenic animal models based on a Parkinson’s disease-associated protein. Ann N Y Acad Sci. 2000;920:33–41.

    Article  CAS  PubMed  Google Scholar 

  35. Kulisevsky J. Role of dopamine in learning and memory: implications for the treatment of cognitive dysfunction in patients with Parkinson’s disease. Drugs Aging. 2000;16(5):365–79.

    Article  CAS  PubMed  Google Scholar 

  36. Lambon Ralph MA, et al. Semantic memory is impaired in both dementia with Lewy bodies and dementia of Alzheimer’s type: a comparative neuropsychological study and literature review. J Neurol Neurosurg Psychiatry. 2001;70(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  37. Leentjens AF. The role of dopamine agonists in the treatment of depression in patients with Parkinson’s disease: a systematic review. Drugs. 2011;71(3):273–86.

    Article  CAS  PubMed  Google Scholar 

  38. Roy DS, et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature. 2016;531(7595):508–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tippett LJ, Grossman M, Farah MJ. The semantic memory impairment of Alzheimer’s disease: category-specific? Cortex. 1996;32(1):143–53.

    Article  CAS  PubMed  Google Scholar 

  40. Fu H, et al. Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron. 2017;93(3):533–541 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giacobini E, Becker RE. One hundred years after discovery of Alzheimer’s disease. A turning point for therapy? J Alzheimers Dis. 2007;12:37–52.

    Article  CAS  PubMed  Google Scholar 

  42. Jakobsen LD, Jensen PH. Parkinson’s disease: alpha-synuclein and parkin in protein aggregation and the reversal of unfolded protein stress. Methods Mol Biol. 2003;232:57–66.

    CAS  PubMed  Google Scholar 

  43. Laferla FM, Green KN, Oddo S. Intracellular amyloid-b in Alzheimer’s disease. Nat Rev Neurosci. 2007;8:499–509.

    Article  CAS  PubMed  Google Scholar 

  44. Mitsuyama F, et al. Amyloid beta: a putative intra-spinal microtubule-depolymerizer to induce synapse-loss or dendritic spine shortening in Alzheimer’s disease. Ital J Anat Embryol. 2009;114(2–3):109–20.

    PubMed  Google Scholar 

  45. Sisodia SS, George-Hyslop PH. r-secretase, notch, Ab and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci. 2002;3:281–90.

    Article  CAS  PubMed  Google Scholar 

  46. Wang JH, Cui S. Associative memory cells and their working principle in the brain. F1000Res. 2018;7:108.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang J-H. Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Res Bull. 2003;60(1–2):53–8.

    Article  PubMed  Google Scholar 

  48. Wang J-H. Searching basic units of memory traces: associative memory cells. F1000Res. 2019;8(457):1–28.

    Google Scholar 

  49. Henke K. A model for memory systems based on processing modes rather than consciousness. Nat Rev Neurosci. 2010;11(7):523–32.

    Article  CAS  PubMed  Google Scholar 

  50. Reder LM, Park H, Kieffaber PD. Memory systems do not divide on consciousness: reinterpreting memory in terms of activation and binding. Psychol Bull. 2009;135(1):23–49.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Raffone A, Srinivasan N, van Leeuwen C. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1641):20130215.

    Article  Google Scholar 

  52. Wang J-H, Guo R, Wei Z. Associative memory extinction is accompanied by decays of associative memory cells and their plasticity at motor cortex but not sensory cortex. Soc Neurosci. 2017;81(09):10385.

    Google Scholar 

  53. Nestler EJ. Cellular basis of memory for addiction. Dialogues Clin Neurosci. 2013;15(4):431–43.

    PubMed  PubMed Central  Google Scholar 

  54. Elizalde N, et al. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology. 2008;199(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  55. Penfield W, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry. 1958;79(5):475–97.

    Article  CAS  PubMed  Google Scholar 

  56. Sun X, et al. microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:150–65.

    Article  CAS  PubMed  Google Scholar 

  57. Wang J-H, Lu W. Molecular profiles in the brain are involved in fear memory induced by physical and psychological stress. Soc Neurosci. 2018;425.19(425):III61.

    Google Scholar 

  58. Liu X, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012;484(7394):381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Si Y, et al. microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress. Am J Med Genet B Neuropsychiatr Genet. 2018;177(6):563–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ramirez S, et al. Activating positive memory engrams suppresses depression-like behaviour. Nature. 2015;522(7556):335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Diamond DM, et al. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast. 2007;2007:60803.

    Article  PubMed  PubMed Central  Google Scholar 

  62. LaBar KS, Cabeza R. Cognitive neuroscience of emotional memory. Nat Rev Neurosci. 2006;7(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  63. Lei Z, Liu B, Wang J-H. Reward memory relieves anxiety-related behavior through synaptic strengthening and protein kinase C in dentate gyrus. Hippocampus. 2016;26(4):502–16.

    Article  CAS  PubMed  Google Scholar 

  64. Coles ME, Heimberg RG. Memory biases in the anxiety disorders: current status. Clin Psychol Rev. 2002;22(4):587–627.

    Article  PubMed  Google Scholar 

  65. Becker ES, et al. Explicit memory in anxiety disorders. J Abnorm Psychol. 1999;108(1):153–63.

    Article  CAS  PubMed  Google Scholar 

  66. McNally RJ. Memory and anxiety disorders. Philos Trans R Soc Lond Ser B Biol Sci. 1997;352(1362):1755–9.

    Article  CAS  Google Scholar 

  67. Bishop SJ. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci. 2007;11(7):307–16.

    Article  PubMed  Google Scholar 

  68. Cameron OG. The differential diagnosis of anxiety. Psychiatric and medical disorders. Psychiatr Clin N Am. 1985;8(1):3–23.

    Article  CAS  Google Scholar 

  69. Rickeles K, Rynn M. Overview and clinical presentation of generalized anxiety disorder. Psychiatr Clin N Am. 2001;24(1):1–17.

    Article  Google Scholar 

  70. Rauch SL, Shin LM, Wright CI. Neuroimaging studies of amygdala function in anxiety disorders. Ann N Y Acad Sci. 2003;985:389–410.

    Article  PubMed  Google Scholar 

  71. Stein MB, Stein DJ. Social anxiety disorders. Lancet. 2008;371(9618):1115–25.

    Article  PubMed  Google Scholar 

  72. Davis M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 1992;15:353–75.

    Article  CAS  PubMed  Google Scholar 

  73. Cunnigham MG, et al. Amygdala GABAergic-rich neural grafts attenuate anxiety-like behavior in rats. Behav Brain Res. 2009;205(1):146–53.

    Article  CAS  Google Scholar 

  74. Anand A, Shekhar A. Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdala. Ann N Y Acad Sci. 2003;985:370–88.

    Article  PubMed  Google Scholar 

  75. Bremner JD. Brain imaging in anxiety disorders. Expert Rev Neurother. 2004;4(2):275–84.

    Article  PubMed  Google Scholar 

  76. Davidson RJ. Anxiety and affective style: one of prefrontal cortex and amygdala. Biol Psychiatry. 2002;51(1):68–80.

    Article  PubMed  Google Scholar 

  77. Davis M, Rainnie D, Cassell M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci. 1994;17(5):208–14.

    Article  CAS  PubMed  Google Scholar 

  78. Garrett A, Chang K. The role of the amygdala in bipolar disorder development. Dev Psychopathol. 2008;20(4):1285–96.

    Article  PubMed  Google Scholar 

  79. LeDoux J. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.

    Article  CAS  PubMed  Google Scholar 

  80. Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression and extinction of conditioned fear. Physiol Rev. 2010;90(2):419–63.

    Article  CAS  PubMed  Google Scholar 

  81. Neugebauer V, et al. The amygdala and persistent pain. Neuroscientist. 2004;10(3):221–34.

    Article  PubMed  Google Scholar 

  82. Roozendaal B, McEwen BS, Chattarji S. Stress, memory and amygdala. Nat Rev Neurosci. 2009;10(6):423–33.

    Article  CAS  PubMed  Google Scholar 

  83. Girardeau G, Inema I, Buzsaki G. Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat Neurosci. 2017;20(11):1634–42.

    Article  CAS  PubMed  Google Scholar 

  84. Hubner C, et al. Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory. Front Behav Neurosci. 2014;8:64.

    PubMed  PubMed Central  Google Scholar 

  85. Amano T, Unal CT, Pare D. Synaptic correlates of fear extinction in the amygdala. Nat Neurosci. 2010;13(4):489–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. DuBios DW, et al. Distinct functional characteristics of the lateral/basolateral amygdala GABAergic system in C57BL/6J and DBA/2J mice. J Pharmacol Exp Ther. 2006;318(2):629–40.

    Article  CAS  Google Scholar 

  87. Ehrlich I, et al. Amygdala inhibitory circuits and the control of fear memory. Neuron. 2009;62:757–71.

    Article  CAS  PubMed  Google Scholar 

  88. Bergink V, van Megen HJ, Westenberg HG. Glutamate and anxiety. Eur Neuropsychopharmacol. 2004;14(3):175–83.

    Article  CAS  PubMed  Google Scholar 

  89. Chaki S, Okubo T, Sekiguchi Y. Non-monoamine-based approach for the treatment of depression and anxiety disorders. Recent Pat CNS Drug Discov. 2006;1(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  90. Cortese BM, Phan KL. The role of glutamate in anxiety and related disorders. CNS Spectr. 2005;10(10):820–30.

    Article  PubMed  Google Scholar 

  91. Simon AB, Gorman JM. Advances in the treatment of anxiety: targeting glutamate. NeuroRx. 2006;3(1):57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bliss TVP, Lynch MA. Long-term potentiation of synaptic transmission in the hippocampus: properties and mechanisms. In: Landfield PW, Deadwyler SA, editors. Long-term potentiation: from biophysics to behavior. New York: Alan R. Liss; 1988. p. 3–72.

    Google Scholar 

  93. Tryon WW, McKay D. Memory modification as an outcome variable in anxiety disorder treatment. J Anxiety Disord. 2009;23(4):546–56.

    Article  PubMed  Google Scholar 

  94. Amini F, et al. Affect, attachment, memory: contributions toward psychobiologic integration. Psychiatry. 1996;59(3):213–39.

    Article  CAS  PubMed  Google Scholar 

  95. Blaney PH. Affect and memory: a review. Psychol Bull. 1986;99(2):229–46.

    Article  CAS  PubMed  Google Scholar 

  96. Dere E, Pause BM, Pietrowsky R. Emotion and episodic memory in neuropsychiatric disorders. Behav Brain Res. 2010;215(2):162–71.

    Article  PubMed  Google Scholar 

  97. Derouesne C. Memory and affect. Rev Neurol (Paris). 2000;156(8–9):732–7.

    CAS  Google Scholar 

  98. Gillihan SJ, Kessler J, Farah MJ. Memories affect mood: evidence from covert experimental assignment to positive, neutral, and negative memory recall. Acta Psychol. 2007;125(2):144–54.

    Article  Google Scholar 

  99. Aldao A, et al. Adaptive and maladaptive emotion regulation strategies: interactive effects during CBT for social anxiety disorder. J Anxiety Disord. 2014;28(4):382–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Brewin CR. Understanding cognitive behaviour therapy: a retrieval competition account. Behav Res Ther. 2006;44(6):765–84.

    Article  PubMed  Google Scholar 

  101. Cuijpers P, et al. Psychological treatment of generalized anxiety disorder: a meta-analysis. Clin Psychol Rev. 2014;34(2):130–40.

    Article  PubMed  Google Scholar 

  102. Rusting CL, DeHart T. Retrieving positive memories to regulate negative mood: consequences for mood-congruent memory. J Pers Soc Psychol. 2000;78(4):737–52.

    Article  CAS  PubMed  Google Scholar 

  103. Hamilton JP, Gotlib IH. Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biol Psychiatry. 2008;63(12):1155–62.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Paolino RM, Levy HM. Amnesia produced by spreading depression and ECS: evidence for time-dependent memory trace localization. Science. 1971;172(3984):746–9.

    Article  CAS  PubMed  Google Scholar 

  105. Berton O, Hahn CG, Thase ME. Are we getting closer to valid translational models for major depression? Science. 2012;338(6103):75–9.

    Article  CAS  PubMed  Google Scholar 

  106. Brunoni AR, Lopes M, Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol. 2008;11(8):1169–80.

    Article  CAS  PubMed  Google Scholar 

  107. Elhwuegi AS. Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(3):435–51.

    Article  CAS  PubMed  Google Scholar 

  108. Strekalova T, et al. Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct. 2011;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rohleder N, Wolf JM, Wolf OT. Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder. Neurosci Biobehav Rev. 2010;35(1):104–14.

    Article  CAS  PubMed  Google Scholar 

  110. Banasr M, Dwyer JM, Duman RS. Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol. 2011;23(6):730–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bennett P, et al. Psychological factors associated with emotional responses to receiving genetic risk information. J Genet Couns. 2008;17(3):234–41.

    Article  PubMed  Google Scholar 

  112. Duman CH. Models of depression. Vitam Horm. 2010;82:1–21.

    Article  PubMed  Google Scholar 

  113. Lin LC, Sibille E. Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? Front Pharmacol. 2013;4:110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33(1):88–109.

    Article  CAS  PubMed  Google Scholar 

  115. Sandi C, Haller J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci. 2015;16(5):290–304.

    Article  CAS  PubMed  Google Scholar 

  116. Ascoli GA, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci. 2008;9(7):557–68.

    Article  CAS  PubMed  Google Scholar 

  117. Buzsaki G, et al. Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 2004;27(4):186–93.

    Article  CAS  PubMed  Google Scholar 

  118. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338(6103):68–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Thompson SM, et al. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38(5):279–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bajbouj M, et al. Evidence for impaired cortical inhibition in patients with unipolar major depression. Biol Psychiatry. 2006;59(5):395–400.

    Article  PubMed  Google Scholar 

  121. Croarkin PE, Levinson AJ, Daskalakis ZJ. Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci Biobehav Rev. 2011;35(3):818–25.

    Article  CAS  PubMed  Google Scholar 

  122. Hasler G, et al. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  123. Hettema JM, et al. Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism. Mol Psychiatry. 2006;11(8):752–62.

    Article  CAS  PubMed  Google Scholar 

  124. Karolewicz B, et al. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol. 2010;13(4):411–20.

    Article  CAS  PubMed  Google Scholar 

  125. Khundakar AA, et al. Cellular pathology within the anterior cingulate cortex of patients with late-life depression: a morphometric study. Psychiatry Res. 2011;194(2):184–9.

    Article  PubMed  Google Scholar 

  126. Levinson AJ, et al. Evidence of cortical inhibitory deficits in major depressive disorder. Biol Psychiatry. 2010;67(5):458–64.

    Article  CAS  PubMed  Google Scholar 

  127. Plante DT, et al. Reduced gamma-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder? Neuropsychopharmacology. 2012;37(6):1548–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Price RB, et al. Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder. Biol Psychiatry. 2009;65(9):792–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Veeraiah P, et al. Dysfunctional glutamatergic and gamma-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression. Biol Psychiatry. 2014;76(3):231–8.

    Article  CAS  PubMed  Google Scholar 

  130. Ma K, et al. Molecular mechanism for stress-induced depression assessed by sequencing miRNA and mRNA in medial prefrontal cortex. PLoS One. 2016;11(7):e0159093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Shen M, Song Z, Wang JH. microRNA and mRNA profiles in the amygdala are associated with stress-induced depression and resilience in juvenile mice. Psychopharmacology (Berl). 2019;236(7):2119–42.

    Article  CAS  Google Scholar 

  132. Camp NJ, Cannon-Albright LA. Dissecting the genetic etiology of major depressive disorder using linkage analysis. Trends Mol Med. 2005;11(3):138–44.

    Article  CAS  PubMed  Google Scholar 

  133. Hamilton JP, Chen MC, Gotlib IH. Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis. 2013;52:4–11.

    Article  PubMed  Google Scholar 

  134. Jabbi M, et al. Investigating the molecular basis of major depressive disorder etiology: a functional convergent genetic approach. Ann N Y Acad Sci. 2008;1148:42–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Keers R, Uher R. Gene-environment interaction in major depression and antidepressant treatment response. Curr Psychiatry Rep. 2012;14(2):129–37.

    Article  PubMed  Google Scholar 

  136. Klengel T, Binder EB. Gene-environment interactions in major depressive disorder. Can J Psychiatr. 2013;58(2):76–83.

    Article  Google Scholar 

  137. Lohoff FW. Overview of the genetics of major depressive disorder. Curr Psychiatry Rep. 2010;12(6):539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Moylan S, et al. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry. 2013;18(5):595–606.

    Article  CAS  PubMed  Google Scholar 

  139. Wilde A, et al. Implications of the use of genetic tests in psychiatry, with a focus on major depressive disorder: a review. Depress Anxiety. 2013;30(3):267–75.

    Article  PubMed  Google Scholar 

  140. Cuijpers P, et al. Efficacy of cognitive-behavioural therapy and other psychological treatments for adult depression: meta-analytic study of publication bias. Br J Psychiatry. 2010;196(3):173–8.

    Article  PubMed  Google Scholar 

  141. Fava GA, et al. Well-being therapy in depression: new insights into the role of psychological well-being in the clinical process. Depress Anxiety. 2017;34(9):801–8.

    Article  PubMed  Google Scholar 

  142. Lewis DA. Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol. 2014;26:22–6.

    Article  CAS  PubMed  Google Scholar 

  143. Royston MC, Roberts GW. Schizophrenia. When neurons go astray. Curr Biol. 1995;5(4):342–4.

    Article  CAS  PubMed  Google Scholar 

  144. Callicott JH, et al. Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology. 1998;18(3):186–96.

    Article  CAS  PubMed  Google Scholar 

  145. Gordon R, Silverstein ML, Harrow M. Associative thinking in schizophrenia: a contextualist approach. J Clin Psychol. 1982;38(4):684–96.

    Article  CAS  PubMed  Google Scholar 

  146. Tek C, et al. Visual perceptual and working memory impairments in schizophrenia. Arch Gen Psychiatry. 2002;59(2):146–53.

    Article  PubMed  Google Scholar 

  147. Bachneff SA. Positron emission tomography and magnetic resonance imaging: a review and a local circuit neurons hypo(dys)function hypothesis of schizophrenia. Biol Psychiatry. 1991;30(9):857–86.

    Article  CAS  PubMed  Google Scholar 

  148. Lisman JE, et al. A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol Psychiatry. 2010;68(1):17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Suh J, et al. Impaired hippocampal ripple-associated replay in a mouse model of schizophrenia. Neuron. 2013;80(2):484–93.

    Article  CAS  PubMed  Google Scholar 

  150. Weinberger DR, et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry. 2001;50(11):825–44.

    Article  CAS  PubMed  Google Scholar 

  151. Finlay JM. Mesoprefrontal dopamine neurons and schizophrenia: role of developmental abnormalities. Schizophr Bull. 2001;27(3):431–42.

    Article  CAS  PubMed  Google Scholar 

  152. Bertolino A. Dysregulation of dopamine and pathology of prefrontal neurons: neuroimaging studies in schizophrenia and related animal models. Epidemiol Psichiatr Soc. 1999;8(4):248–54.

    Article  CAS  PubMed  Google Scholar 

  153. Veselinovic T, Paulzen M, Grunder G. Cariprazine, a new, orally active dopamine D2/3 receptor partial agonist for the treatment of schizophrenia, bipolar mania and depression. Expert Rev Neurother. 2013;13(11):1141–59.

    Article  CAS  PubMed  Google Scholar 

  154. Jiang Z, Cowell RM, Nakazawa K. Convergence of genetic and environmental factors on parvalbumin-positive interneurons in schizophrenia. Front Behav Neurosci. 2013;7:116.

    PubMed  PubMed Central  Google Scholar 

  155. Keverne EB. GABA-ergic neurons and the neurobiology of schizophrenia and other psychoses. Brain Res Bull. 1999;48(5):467–73.

    Article  CAS  PubMed  Google Scholar 

  156. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.

    Article  CAS  PubMed  Google Scholar 

  157. Volk DW, et al. Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex. 2002;12(10):1063–70.

    Article  PubMed  Google Scholar 

  158. Miller R, Chouinard G. Loss of striatal cholinergic neurons as a basis for tardive and L-dopa-induced dyskinesias, neuroleptic-induced supersensitivity psychosis and refractory schizophrenia. Biol Psychiatry. 1993;34(10):713–38.

    Article  CAS  PubMed  Google Scholar 

  159. Yeomans JS. Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology. 1995;12(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  160. Liu Y, et al. Activity strengths of cortical glutamatergic and GABAergic neurons are correlated with transgenerational inheritance of learning ability. Oncotarget. 2017;8(68):112401–16.

    PubMed  PubMed Central  Google Scholar 

  161. Galanopoulou AS. Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch. 2010;460(2):505–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Brenner HD, Pfammatter M. Psychological therapy in schizophrenia: what is the evidence? Acta Psychiatr Scand Suppl. 2000;102(407):74–7.

    Article  Google Scholar 

  163. Mueller DR, Roder V. Integrated psychological therapy for schizophrenia patients. Expert Rev Neurother. 2007;7(1):1–3.

    Article  PubMed  Google Scholar 

  164. Roder V, Mueller DR, Schmidt SJ. Effectiveness of integrated psychological therapy (IPT) for schizophrenia patients: a research update. Schizophr Bull. 2011;37(Suppl 2):S71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Shattock L, et al. Therapeutic alliance in psychological therapy for people with schizophrenia and related psychoses: a systematic review. Clin Psychol Psychother. 2018;25(1):e60–85.

    Article  PubMed  Google Scholar 

  166. Blank T, Nijholt I, Spiess J. Treatment strategies of age-related memory dysfunction by modulation of neuronal plasticity. Mini Rev Med Chem. 2007;7(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  167. Maillet D, Rajah MN. Age-related differences in brain activity in the subsequent memory paradigm: a meta-analysis. Neurosci Biobehav Rev. 2014;45:246–57.

    Article  PubMed  Google Scholar 

  168. Wang J-H, Kelly PT. Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol (Lond). 2001;533(2):407–22.

    Article  CAS  Google Scholar 

  169. Zhang M, et al. Calcium signal-dependent plasticity of neuronal excitability developed postnatally. J Neurobiol. 2004;61:277–87.

    Article  CAS  PubMed  Google Scholar 

  170. Giray EF, et al. The incidence of eidetic imagery as a function of age. Child Dev. 1976;47(4):1207–10.

    Article  CAS  PubMed  Google Scholar 

  171. Miller E. The affective nature of illusion and hallucination. Part Ii: eidetic imagery. J Neurol Psychopathol. 1931;12(45):1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wasinger K, Zelhart PF, Markley RP. Memory for random shapes and eidetic ability. Percept Mot Skills. 1982;55(3 Pt 2):1076–8.

    Article  CAS  PubMed  Google Scholar 

  173. Roy DS, et al. Silent memory engrams as the basis for retrograde amnesia. Proc Natl Acad Sci U S A. 2017;114(46):E9972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Martorell AJ, et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell. 2019;176(10):1–16.

    Google Scholar 

  175. Ryan TJ, et al. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015;348(6238):1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Eustache F, et al. Episodic memory in transient global amnesia: encoding, storage, or retrieval deficit? J Neurol Neurosurg Psychiatry. 1999;66(2):148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Guillery-Girard B, et al. Long-term memory following transient global amnesia: an investigation of episodic and semantic memory. Acta Neurol Scand. 2006;114(5):329–33.

    Article  CAS  PubMed  Google Scholar 

  178. Cooper RA, et al. Reduced hippocampal functional connectivity during episodic memory retrieval in autism. Cereb Cortex. 2017;27(2):888–902.

    PubMed  PubMed Central  Google Scholar 

  179. Gaigg SB, Bowler DM, Gardiner JM. Episodic but not semantic order memory difficulties in autism spectrum disorder: evidence from the Historical Figures Task. Memory. 2014;22(6):669–78.

    Article  PubMed  Google Scholar 

  180. Wojcik DZ, Moulin CJ, Souchay C. Metamemory in children with autism: exploring “feeling-of-knowing” in episodic and semantic memory. Neuropsychology. 2013;27(1):19–27.

    Article  PubMed  Google Scholar 

  181. Gron G, Riepe MW. Neural basis for the cognitive continuum in episodic memory from health to Alzheimer disease. Am J Geriatr Psychiatry. 2004;12(6):648–52.

    Article  PubMed  Google Scholar 

  182. Tromp D, et al. Episodic memory in normal aging and Alzheimer disease: insights from imaging and behavioral studies. Ageing Res Rev. 2015;24(Pt B):232–62.

    Article  CAS  PubMed  Google Scholar 

  183. Ostergaard AL. Episodic, semantic and procedural memory in a case of amnesia at an early age. Neuropsychologia. 1987;25(2):341–57.

    Article  CAS  PubMed  Google Scholar 

  184. Cohen G, Johnston R, Plunkett K. Exploring cognition: damaged brains and neural networks. In: Cohen G, editor. Exploring cognition: damaged brains and neural networks. Erlbaum: Psychology Press; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, JH. (2019). The Impacts of Associative Memory Cells on Pathology. In: Associative Memory Cells: Basic Units of Memory Trace. Springer, Singapore. https://doi.org/10.1007/978-981-13-9501-7_9

Download citation

Publish with us

Policies and ethics