Skip to main content
Log in

Gene–Environment Interaction in Major Depression and Antidepressant Treatment Response

  • GENETIC DISORDERS (JF CUBELLS AND EB BINDER, SECTION EDITORS)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Response to antidepressants is interindividually variable. It has been suggested that this variability is a direct consequence of etiological heterogeneity. Therefore, the same genes, environments, and gene–environment interactions implicated in different etiological pathways to depression may also predict response to treatment. This article reviews the evidence relevant to this hypothesis by first outlining the roles of genes, environments, and gene–environment interplay in the etiology of depression, and then considering the same factors in treatment response. Environmental exposures, such as childhood maltreatment, are potent predictors of both depression and treatment response. Although alone genetic factors have failed to consistently predict either phenotype, several polymorphisms have been shown to moderate the effects of environmental adversity on the development of depression and treatment response. These findings suggest that the dissection of etiological pathways to depression may provide the key to understanding and predicting response to antidepressants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Murray CJL, Lopez AD. The global burden of disease: a comprehensive assessment of mortality, injuries, and risk factors in 1990 and projected to 2020. Cambridge: Harvard School of Public Health; 1996.

    Google Scholar 

  2. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163(1):28–40.

    Article  PubMed  Google Scholar 

  3. Steimer W, Muller B, Leucht S, Kissling W. Pharmacogenetics: a new diagnostic tool in the management of antidepressive drug therapy. Clin Chim Acta. 2001;308(1–2):33–41.

    Article  PubMed  CAS  Google Scholar 

  4. Klengel T, Binder EB. Using gene–environment interactions to target personalized treatment in mood disorder. Pers Med. 2011;8(1):12.

    Article  Google Scholar 

  5. Uher R. The implications of gene–environment interactions in depression: will cause inform cure? Mol Psychiatry. 2008;13(12):1070–8.

    Article  PubMed  CAS  Google Scholar 

  6. Keers R, Aitchison KJ. Pharmacogenetics of antidepressant response. Expert Rev Neurother. 2011;11(1):101–25.

    Article  PubMed  CAS  Google Scholar 

  7. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157(10):1552–62.

    Article  PubMed  CAS  Google Scholar 

  8. Mazure CM. Life stressors as risk factors in depression. Clin Psychol Sci Pract. 1998;5(3):291–313.

    Article  Google Scholar 

  9. Kendler KS, Gardner CO. Monozygotic twins discordant for major depression: a preliminary exploration of the role of environmental experiences in the aetiology and course of illness. Psychol Med. 2001;31(3):411–23.

    Article  PubMed  CAS  Google Scholar 

  10. Krishnan V, Nestler EJ. Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry. 2010;167(11):1305–20.

    Article  PubMed  Google Scholar 

  11. McGuffin P, Katz R, Watkins S, Rutherford J. A hospital-based twin register of the heritability of DSM-IV unipolar depression. Arch Gen Psychiatry. 1996;53(2):129–36.

    Article  PubMed  CAS  Google Scholar 

  12. Lewis CM, Ng MY, Butler AW, Cohen-Woods S, Uher R, Pirlo K, et al. Genome-wide association study of major recurrent depression in the U.K. population. Am J Psychiatry. 2010;167(8):949–57.

    Article  PubMed  Google Scholar 

  13. Muglia P, Tozzi F, Galwey NW, Francks C, Upmanyu R, Kong XQ, et al. Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol Psychiatry. 2010;15(6):589–601.

    Article  PubMed  CAS  Google Scholar 

  14. Shi J, Potash JB, Knowles JA, Weissman MM, Coryell W, Scheftner WA, et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry. 2011;16(2):193–201.

    Article  PubMed  CAS  Google Scholar 

  15. Shyn SI, Shi J, Kraft JB, Potash JB, Knowles JA, Weissman MM, et al. Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies. Mol Psychiatry. 2011;16(2):202–15.

    Article  PubMed  CAS  Google Scholar 

  16. Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T, et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry. 2009;14(4):359–75.

    Article  PubMed  CAS  Google Scholar 

  17. Wray NR, Pergadia ML, Blackwood DH, Penninx BW, Gordon SD, Nyholt DR et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry. 2010. doi:10.1038/mp.2010.109.

  18. Widom CS, DuMont K, Czaja SJ. A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Arch Gen Psychiatry. 2007;64(1):49–56.

    Article  PubMed  Google Scholar 

  19. Wise LA, Zierler S, Krieger N, Harlow BL. Adult onset of major depressive disorder in relation to early life violent victimisation: a case-control study. Lancet. 2001;358(9285):881–7.

    Article  PubMed  CAS  Google Scholar 

  20. Scott KM, Smith DR, Ellis PM. Prospectively ascertained child maltreatment and its association with DSM-IV mental disorders in young adults. Arch Gen Psychiatry. 2010;67(7):712–9.

    Article  PubMed  Google Scholar 

  21. Clark C, Caldwell T, Power C, Stansfeld SA. Does the influence of childhood adversity on psychopathology persist across the lifecourse? A 45-year prospective epidemiologic study. Ann Epidemiol. 2010;20(5):385–94.

    Article  PubMed  Google Scholar 

  22. Gilbert R, Widom CS, Browne K, Fergusson D, Webb E, Janson S. Burden and consequences of child maltreatment in high-income countries. Lancet. 2009;373(9657):68–81.

    Article  PubMed  Google Scholar 

  23. Brown GW, Bifulco A, Harris TO. Life events, vulnerability and onset of depression: some refinements. Br J Psychiatry. 1987;150:30–42.

    Article  PubMed  CAS  Google Scholar 

  24. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301(5631):386–9.

    Article  PubMed  CAS  Google Scholar 

  25. Munafo MR, Durrant C, Lewis G, Flint J. Gene × environment interactions at the serotonin transporter locus. Biol Psychiatry. 2009;65(3):211–9.

    Article  PubMed  CAS  Google Scholar 

  26. Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009;301(23):2462–71.

    Article  PubMed  CAS  Google Scholar 

  27. Uher R, McGuffin P. The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Mol Psychiatry. 2010;15(1):18–22.

    Article  PubMed  CAS  Google Scholar 

  28. •• Karg K, Burmeister M, Shedden K, Sen S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry. 2011;68(5):444–54. This is the most recent meta-analysis of the most extensively studied G×E in MDD. This paper reports a significant interaction between the 5-HTTLPR and environmental adversity on the development of depression. It also suggests that interaction effects may be stronger for measures of childhood maltreatment than recent stressors and in studies using objective or interview-based measures of stressors rather than self-report questionnaires.

    Article  PubMed  Google Scholar 

  29. Uher R, Caspi A, Houts R, Sugden K, Williams B, Poulton R, et al. Serotonin transporter gene moderates childhood maltreatment’s effects on persistent but not single-episode depression: replications and implications for resolving inconsistent results. J Affect Disord. 2011;135(1–3):56–65.

    Article  PubMed  CAS  Google Scholar 

  30. Post RM. Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. J Psychiatr Res. 2007;41(12):979–90.

    Article  PubMed  Google Scholar 

  31. Kim JM, Stewart R, Kim SW, Yang SJ, Shin IS, Kim YH, et al. Interactions between life stressors and susceptibility genes (5-HTTLPR and BDNF) on depression in Korean elders. Biol Psychiatry. 2007;62(5):423–8.

    Article  PubMed  CAS  Google Scholar 

  32. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–69.

    Article  PubMed  CAS  Google Scholar 

  33. Aguilera M, Arias B, Wichers M, Barrantes-Vidal N, Moya J, Villa H, et al. Early adversity and 5-HTT/BDNF genes: new evidence of gene–environment interactions on depressive symptoms in a general population. Psychol Med. 2009;39(9):1425–32.

    Article  PubMed  CAS  Google Scholar 

  34. Hosang GM, Uher R, Keers R, Cohen-Woods S, Craig I, Korszun A, et al. Stressful life events and the brain-derived neurotrophic factor gene in bipolar disorder. J Affect Disord. 2010;125(1–3):345–9.

    Article  PubMed  CAS  Google Scholar 

  35. Juhasz G, Dunham JS, McKie S, Thomas E, Downey D, Chase D, et al. The CREB1-BDNF-NTRK2 pathway in depression: multiple gene–cognition–environment interactions. Biol Psychiatry. 2011;69(8):762–71.

    Article  PubMed  CAS  Google Scholar 

  36. Horstmann S, Binder EB. Glucocorticoids as predictors of treatment response in depression. Harv Rev Psychiatry. 2011;19(3):125–43.

    Article  PubMed  Google Scholar 

  37. Tyrka AR, Price LH, Gelernter J, Schepker C, Anderson GM, Carpenter LL. Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: effects on hypothalamic-pituitary-adrenal axis reactivity. Biol Psychiatry. 2009;66(7):681–5.

    Article  PubMed  CAS  Google Scholar 

  38. Cicchetti D, Rogosch FA, Oshri A. Interactive effects of corticotropin releasing hormone receptor 1, serotonin transporter linked polymorphic region, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology. Dev Psychopathol. 2011;23(4):1125–38.

    Article  PubMed  Google Scholar 

  39. Schmid B, Blomeyer D, Treutlein J, Zimmermann US, Buchmann AF, Schmidt MH, et al. Interacting effects of CRHR1 gene and stressful life events on drinking initiation and progression among 19-year-olds. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale. Neuropsychopharmacologicum (CINP). 2011;13(6):703–14.

    Article  Google Scholar 

  40. DeYoung CG, Cicchetti D, Rogosch FA. Moderation of the association between childhood maltreatment and neuroticism by the corticotropin-releasing hormone receptor 1 gene. J Child Psychol Psychiatry. 2011;52(8):898–906. doi:10.1111/j.1469-7610.2011.02404.x.

    Article  PubMed  Google Scholar 

  41. Bradley RG, Binder EB, Epstein MP, Tang Y, Nair HP, Liu W, et al. Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene. Arch Gen Psychiatry. 2008;65(2):190–200.

    Article  PubMed  CAS  Google Scholar 

  42. Polanczyk G, Caspi A, Williams B, Price TS, Danese A, Sugden K, et al. Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: replication and extension. Arch Gen Psychiatry. 2009;66(9):978–85.

    Article  PubMed  CAS  Google Scholar 

  43. Kranzler HR, Feinn R, Nelson EC, Covault J, Anton RF, Farrer L, et al. A CRHR1 haplotype moderates the effect of adverse childhood experiences on lifetime risk of major depressive episode in African-American women. Am J Med Genet B Neuropsychiatr Genet. 2011;156(8):960–8.

    Article  CAS  Google Scholar 

  44. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36(12):1319–25.

    Article  PubMed  CAS  Google Scholar 

  45. Ising M, Depping AM, Siebertz A, Lucae S, Unschuld PG, Kloiber S, et al. Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur J Neurosci. 2008;28(2):389–98.

    Article  PubMed  Google Scholar 

  46. Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299(11):1291–305.

    Article  PubMed  CAS  Google Scholar 

  47. Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, Farrer LA, et al. Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology. 2011;35(8):1684–92.

    Google Scholar 

  48. Appel K, Schwahn C, Mahler J, Schulz A, Spitzer C, Fenske K, et al. Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population. Neuropsychopharmacology. 2011;36(10):1982–91. doi:10.1038/npp.2011.81.

    Article  PubMed  Google Scholar 

  49. Zimmermann P, Bruckl T, Nocon A, Pfister H, Binder EB, Uhr M, et al. Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: results from a 10-year prospective community study. Am J Psychiatry. 2011;168(10):1107–16.

    Article  PubMed  Google Scholar 

  50. Bet PM, Penninx BW, Bochdanovits Z, Uitterlinden AG, Beekman AT, van Schoor NM, et al. Glucocorticoid receptor gene polymorphisms and childhood adversity are associated with depression: new evidence for a gene–environment interaction. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(5):660–9.

    Article  PubMed  CAS  Google Scholar 

  51. Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry. 2010;15(5):473–500. doi:10.1038/mp.2008.116.

    Article  PubMed  CAS  Google Scholar 

  52. Kirchheiner J, Lorch R, Lebedeva E, Seeringer A, Roots I, Sasse J, et al. Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics. 2008;9(7):841–6.

    Article  PubMed  CAS  Google Scholar 

  53. Perlis RH, Fijal B, Adams DH, Sutton VK, Trivedi MH, Houston JP. Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol Psychiatry. 2009;65(9):785–91.

    Article  PubMed  CAS  Google Scholar 

  54. Lekman M, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, et al. The FKBP5-gene in depression and treatment response—an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) cohort. Biol Psychiatry. 2008;63(12):1103–10.

    Article  PubMed  CAS  Google Scholar 

  55. Chi MH, Chang HH, Lee SY, Lee IH, Gean PW, Yang YK, et al. Brain derived neurotrophic factor gene polymorphism (Val66Met) and short-term antidepressant response in major depressive disorder. J Affect Disord. 2010;126(3):430–5. doi:10.1016/j.jad.2010.07.006.

    Article  PubMed  CAS  Google Scholar 

  56. Zou YF, Wang Y, Liu P, Feng XL, Wang BY, Zang TH, et al. Association of BDNF Val66Met polymorphism with both baseline HRQOL scores and improvement in HRQOL scores in Chinese major depressive patients treated with fluoxetine. Hum Psychopharmacol. 2011;25(2):145–52.

    Article  Google Scholar 

  57. Licinio J, O’Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R, et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry. 2004;9(12):1075–82.

    Article  PubMed  CAS  Google Scholar 

  58. Liu Z, Zhu F, Wang G, Xiao Z, Tang J, Liu W, et al. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci Lett. 2007;414(2):155–8.

    Article  PubMed  CAS  Google Scholar 

  59. Uher R, Huezo-Diaz P, Perroud N, Smith R, Rietschel M, Mors O, et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J. 2009;9(4):225–33.

    Article  PubMed  CAS  Google Scholar 

  60. •• 62. Taylor MJ, Sen S, Bhagwagar Z. Antidepressant response and the serotonin transporter gene-linked polymorphic region. Biol Psychiatry. 2010;68(6):536–43. doi:10.1016/j.biopsych.2010.04.034. This is the most recent meta-analysis of the 5-HTTLPR and response to antidepressant treatment. The study reports no effects of genotype on response to treatment. There was considerable heterogeneity of effects between studies that was not explained by previously suggested moderators, including age, ethnicity, geographic location, or study duration.

  61. Zou YF, Wang F, Feng XL, Li WF, Tao JH, Pan FM, et al. Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neurosci Lett. 2011;484(1):56–61.

    Article  Google Scholar 

  62. Choi MJ, Kang RH, Lim SW, Oh KS, Lee MS. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res. 2006;1118(1):176–82.

    Article  PubMed  CAS  Google Scholar 

  63. Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord. 2007;104(1–3):83–90.

    Article  PubMed  CAS  Google Scholar 

  64. Dong C, Wong ML, Licinio J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry. 2009;14(12):1105–18.

    Article  PubMed  CAS  Google Scholar 

  65. Brouwer JP, Appelhof BC, van Rossum EF, Koper JW, Fliers E, Huyser J, et al. Prediction of treatment response by HPA-axis and glucocorticoid receptor polymorphisms in major depression. Psychoneuroendocrinology. 2006;31(10):1154–63.

    Article  PubMed  CAS  Google Scholar 

  66. Ising M, Lucae S, Binder EB, Bettecken T, Uhr M, Ripke S, et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry. 2009;66(9):966–75.

    Article  PubMed  CAS  Google Scholar 

  67. Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD, et al. A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry. 2010;67(2):133–8.

    Article  PubMed  CAS  Google Scholar 

  68. Uher R, Perroud N, Ng MY, Hauser J, Henigsberg N, Maier W, et al. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry. 2010;167(5):555–64.

    Article  PubMed  Google Scholar 

  69. Ishii M, Maeda N. Oversulfated chondroitin sulfate plays critical roles in the neuronal migration in the cerebral cortex. J Biol Chem. 2008;283(47):32610–20.

    Article  PubMed  CAS  Google Scholar 

  70. Jetten AM, Kurebayashi S, Ueda E. The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog Nucleic Acid Res Mol Biol. 2001;69:205–47.

    Article  PubMed  CAS  Google Scholar 

  71. DUAG. Paroxetine: a selective serotonin reuptake inhibitor showing better tolerance but weaker antidepressant effect than clomipramine in a controlled multicenter study. J Affect Disord. 1990;18:7.

    Google Scholar 

  72. Horacek J, Rozehnalova E, Rosslerova H, Dvorak A. The influence of stressful life events on development of depression and treatment response in the population of patients in higher age. Cesk Slov Psychiat. 2011;106(5):311–7.

    Google Scholar 

  73. Uher R. Genes, environment, and individual differences in responding to treatment for depression. Harv Rev Psychiatry. 2011;19(3):109–24.

    Article  PubMed  Google Scholar 

  74. Keers R, Uher R, Gupta B, Rietschel M, Schulze TG, Hauser J, et al. Stressful life events, cognitive symptoms of depression and response to antidepressants in GENDEP. J Affect Disord. 2010;127(1–3):337–42.

    Article  PubMed  CAS  Google Scholar 

  75. •• Nanni V, Uher R, Danese A. Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: a meta-analysis. Am J Psychiatry. 2011. doi:10.1176/appi.ajp.2011.11020335. This is the first meta-analysis of the effects of childhood maltreatment on course of illness and treatment response in depression. Childhood maltreatment was associated with both an elevated risk of developing recurrent and persistent depressive episodes and a lack of response or remission during treatment of depression.

  76. Miniati M, Rucci P, Benvenuti A, Frank E, Buttenfield J, Giorgi G, et al. Clinical characteristics and treatment outcome of depression in patients with and without a history of emotional and physical abuse. J Psychiatr Res. 2010;44(5):302–9.

    Article  PubMed  CAS  Google Scholar 

  77. Kaplan MJ, Klinetob NA. Childhood emotional trauma and chronic posttraumatic stress disorder in adult outpatients with treatment-resistant depression. J Nerv Ment Dis. 2000;188(9):596–601.

    Article  PubMed  CAS  Google Scholar 

  78. Enns MW, Cox BJ. Psychosocial and clinical predictors of symptom persistence vs remission in major depressive disorder. Can J Psychiatry. 2005;50(12):769–77.

    PubMed  Google Scholar 

  79. Sakado K, Sato T, Uehara T, Sakado M, Someya T. Perceived parenting pattern and response to antidepressants in patients with major depression. J Affect Disord. 1999;52(1–3):59–66.

    Article  PubMed  CAS  Google Scholar 

  80. Asarnow JR, Emslie G, Clarke G, Wagner KD, Spirito A, Vitiello B, et al. Treatment of selective serotonin reuptake inhibitor-resistant depression in adolescents: predictors and moderators of treatment response. J Am Acad Child Adolesc Psychiatry. 2009;48(3):330–9.

    PubMed  Google Scholar 

  81. Johnstone JM, Luty SE, Carter JD, Mulder RT, Frampton CM, Joyce PR. Childhood neglect and abuse as predictors of antidepressant response in adult depression. Depress Anxiety. 2009;26(8):711–7.

    Article  PubMed  Google Scholar 

  82. Serretti A, Kato M, Kennedy JL. Pharmacogenetic studies in depression: a proposal for methodologic guidelines. Pharmacogenomics J. 2008;8(2):90–100.

    Article  PubMed  CAS  Google Scholar 

  83. Tomaszewska W, Peselow ED, Barouche F, Fieve RR. Antecedent life events, social supports and response to antidepressants in depressed patients. Acta Psychiatr Scand. 1996;94(5):352–7.

    Article  PubMed  CAS  Google Scholar 

  84. Mandelli L, Marino E, Pirovano A, Calati R, Zanardi R, Colombo C, et al. Interaction between SERTPR and stressful life events on response to antidepressant treatment. Eur Neuropsychopharmacol. 2009;19(1):64–7.

    Article  PubMed  CAS  Google Scholar 

  85. • Keers R, Uher R, Huezo-Diaz P, Smith R, Jaffee S, Rietschel M, et al. Interaction between serotonin transporter gene variants and life events predicts response to antidepressants in the GENDEP project. Pharmacogenomics J. 2011;11(2):138–45. This is the largest study to date to explore G×E as predictors of antidepressant treatment response. It reports a significant interaction between the 5-HTTLPR and SLEs on response to the SSRI escitalopram, but not for the TCA nortriptyline.

    Article  PubMed  CAS  Google Scholar 

  86. Bukh JD, Bock C, Vinberg M, Werge T, Gether U, Kessing LV. No interactions between genetic polymorphisms and stressful life events on outcome of antidepressant treatment. Eur Neuropsychopharmacol. 2010;20(5):327–35.

    Article  PubMed  CAS  Google Scholar 

  87. Zielinski DS. Child maltreatment and adult socioeconomic well-being. Child Abuse Negl. 2009;33(10):666–78.

    Article  PubMed  Google Scholar 

  88. Brown GW, Craig TK, Harris TO, Handley RV. Parental maltreatment and adulthood cohabiting partnerships: a life-course study of adult chronic depression—4. J Affect Disord. 2008;110(1–2):115–25.

    Article  PubMed  Google Scholar 

  89. Brown GW, Harris TO. Depression and the serotonin transporter 5-HTTLPR polymorphism: a review and a hypothesis concerning gene–environment interaction. J Affect Disord. 2008;111(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  90. Nemeroff CB, Heim CM, Thase ME, Klein DN, Rush AJ, Schatzberg AF, et al. Differential responses to psychotherapy versus pharmacotherapy in patients with chronic forms of major depression and childhood trauma. Proc Natl Acad Sci U S A. 2003;100(24):14293–6.

    Article  PubMed  CAS  Google Scholar 

  91. Bulmash E, Harkness KL, Stewart JG, Bagby RM. Personality, stressful life events, and treatment response in major depression. J Consult Clin Psychol. 2009;77(6):1067–77.

    Article  PubMed  Google Scholar 

  92. Lewis CC, Simons AD, Nguyen LJ, Murakami JL, Reid MW, Silva SG, et al. Impact of childhood trauma on treatment outcome in the Treatment for Adolescents with Depression Study (TADS). J Am Acad Child Adolesc Psychiatry. 2010;49(2):132–40.

    PubMed  Google Scholar 

  93. Simons AD, Gordon JS, Monroe SM, Thase ME. Toward an integration of psychologic, social, and biologic factors in depression: effects on outcome and course of cognitive therapy. J Consult Clin Psychol. 1995;63(3):369–77.

    Article  PubMed  CAS  Google Scholar 

  94. •• Eley TC, Hudson JL, Creswall C, Tropeano M, Lester KJ, Cooper P, et al. Therapygenetics: The 5HTTLPR and response to psychological therapy. Mol Psychiatry. doi:101038/mp2011132.2011. This is the first study to examine genetic predictors of response to cognitive-behavioral therapy. It reports that (in contrast to findings from antidepressant response studies) individuals with the SS genotype of the 5-HTTLPR respond more favorably to treatment.

  95. Smeraldi E, Zanardi R, Benedetti F, Di BD, Perez J, Catalano M. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry. 1998;3(6):508–11.

    Article  PubMed  CAS  Google Scholar 

  96. Van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry. 2006;59(8):681–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Keers is funded by a Medical Research Council (MRC) PhD Studentship to the MRC SGDP Centre at the Institute of Psychiatry, King’s College London.

Dr. Uher has served as a consultant for the World Health Organization and has had travel/accommodations expenses covered/reimbursed by the World Health Organization, University of Helsinki, and European Neuropsychopharmacology. He is also supported by a grant from the European Commission (grant agreement no. 115008).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Keers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keers, R., Uher, R. Gene–Environment Interaction in Major Depression and Antidepressant Treatment Response. Curr Psychiatry Rep 14, 129–137 (2012). https://doi.org/10.1007/s11920-011-0251-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-011-0251-x

Keywords

Navigation