Skip to main content

Nonlinear Characterization of a Bistable Energy Harvester Dynamical System

  • Conference paper
  • First Online:
Topics in Nonlinear Mechanics and Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 228))

Abstract

This chapter explores the nonlinear dynamics of a bistable piezo-magneto-elastic energy harvester with the objective of determining the influence of external force parameters on the system response. Time series, phase space trajectories, Poincaré maps and bifurcation diagrams are employed in order to reveal system dynamics complexity and nonlinear effects, such as chaos incidence and hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A.A. Abdelkareem, L. Xu, M.K.A. Ali, A. Elagouz, J. Mi, S. Guo, Y. Liu, L. Zuo, Vibration energy harvesting in automotive suspension system: a detailed review. Appl. Energy 229, 672–699 (2018)

    Article  Google Scholar 

  2. C.H.C.C. Basqueroto, F.R. Chavarette, S. da Silva, Analysis of bistable and chaotic piezoelectric energy harvesting device coupled with diode bridge rectifier. Int. J. Pure Appl. Math. 98, 275–289 (2015)

    Article  Google Scholar 

  3. M. Belhaq, M. Hamdi, Energy harvesting from quasi-periodic vibrations. Nonlinear Dyn. 86, 2193–2205 (2016)

    Article  Google Scholar 

  4. M. Borowiec, Energy harvesting of cantilever beam system with linear and nonlinear piezoelectric model. Eur. Phys. J. Spec. Top. 224(14), 2771–2785 (2015)

    Article  Google Scholar 

  5. S. Bradai, S. Naifar, C. Viehweger, O. Kanoun, G. Litak, Nonlinear analysis of an electrodynamic broadband energy harvester. Eur. Phys. J. Spec. Top. 224(14), 2919–2927 (2015)

    Article  Google Scholar 

  6. M.A. Clementino, R. Reginatto, S. da Silva, Modeling of piezoeletric energy harvesting considering the dependence of the rectifier circuit. J. Intell. Mater. Syst. Struct. 36, 283–292 (2014)

    Google Scholar 

  7. F. Cottone, H. Vocca, L. Gammaitoni, Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Article  ADS  Google Scholar 

  8. H.L. Dai, Y.W. Yang, A. Abdelkefi, L. Wang, Nonlinear analysis and characteristics of inductive galloping energy harvesters. Commun. Nonlinear Sci. Numer. Simul. 59, 580–591 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Erturk, J. Hoffmann, D.J. Inman, A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009)

    Article  ADS  Google Scholar 

  10. F.M. Foong, C.K. Thein, D. Yurchenko, On mechanical damping of cantilever beam-based electromagnetic resonators. Mech. Syst. Signal Process. 119, 120–137 (2019)

    Article  ADS  Google Scholar 

  11. M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, A.W. Lees, G. Litak, Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23(13), 1505–1521 (2012)

    Article  Google Scholar 

  12. Z. Ghouli, M. Hamdi, F. Lakrad, M. Belhaq, Quasiperiodic energy harvesting in a forced and delayed Duffing harvester device. J. Sound Vib. 407, 271–285 (2017)

    Article  ADS  Google Scholar 

  13. J.A.B. Gripp, L.C.S. Góes, O. Heuss, F. Scinocca, An adaptive piezoelectric vibration absorber enhanced by a negative capacitance applied to a shell structure. Smart Mater. Struct. 24(12), 125017 (2015)

    Article  ADS  Google Scholar 

  14. Z. Hadas, L. Janak, J. Smilek, Virtual prototypes of energy harvesting systems for industrial applications. Mech. Syst. Signal Process. 110, 152–164 (2018)

    Article  ADS  Google Scholar 

  15. E. Halvorsen, G. Litak, Statistics of a noise-driven elastic inverted pendulum. Eur. Phys. J. Appl. Phys. 70(1), 10901 (2015)

    Article  ADS  Google Scholar 

  16. P. Harris, G. Litak, J. Iwaniec, C.R. Bowen, Recurrence plot and recurrence quantification of the dynamic properties of cross-shaped laminated energy harvester. Appl. Mech. Mater. 849, 95–105 (2016)

    Article  Google Scholar 

  17. P. Holmes, A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. A 292, 429–448 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Ju, C. Ji, Impact-based piezoelectric vibration energy harvester. Appl. Energy 214, 139–151 (2018)

    Article  Google Scholar 

  19. P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V.C.M. Leung, Y.L. Guan, Wireless energy harvesting for the internet of things. IEEE Commun. Mag. 53, 102–108 (2015)

    Article  Google Scholar 

  20. S. Kato, S. Ushiki, A. Masuda, A broadband energy harvester using leaf springs and stoppers with response stabilization control. J. Phys. Conf. Ser. 1052, 012083 (2018)

    Article  Google Scholar 

  21. J.M. Kluger, T.P. Sapsis, A.H. Slocum, Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams. J. Sound Vib. 341, 174–194 (2015)

    Article  ADS  Google Scholar 

  22. I. Kovacic, M. Brennan, The Duffing Equation: Nonlinear Oscillators and their Behavior (Wiley, 2011)

    Google Scholar 

  23. A. Kumar, R. Kiran, V.S. Chauhan, R. Kumar, R. Vaish, Piezoelectric energy harvester for pacemaker application: a comparative study. Mater. Res. Express 5, 075701 (2018)

    Article  ADS  Google Scholar 

  24. Y. Liao, J. Liang, Unified modeling, analysis and comparison of piezoelectric vibration energy harvesters. Mech. Syst. Signal Process. 123, 403–425 (2019)

    Article  ADS  Google Scholar 

  25. G. Litak, M.I. Friswell, S. Adhikari, Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51(5), 1017–1025 (2016)

    Article  MathSciNet  Google Scholar 

  26. G. Litak, A. Rysak, M. Borowiec, M. Scheffler, J. Gier, Vertical beam modal response in a broadband energy harvester. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 230 (2016)

    Google Scholar 

  27. V.G. Lopes, J.V.L.L. Peterson, A. Cunha Jr., Numerical study of parameters influence over the dynamics of a piezo-magneto-elastic energy harvesting device (In XXXVII Congresso Nacional de Matemática Aplicada e Computacional, São José dos Campos, Brazil, 2017)

    Google Scholar 

  28. V.G. Lopes, J.V.L.L. Peterson, A. Cunha Jr, On the nonlinear dynamics of a bi-stable piezoelectric energy harvesting device, in 24th ABCM International Congress of Mechanical Engineering (COBEM 2017) (Curitiba, Brazil, 2017)

    Google Scholar 

  29. V.G. Lopes, J.V.L.L. Peterson, A. Cunha Jr, Analysis of the nonlinear dynamics of a bistable energy harvesting system with colored noise disturbances, in Conference of Computational Interdisciplinary Science (CCIS 2019) (2019)

    Google Scholar 

  30. Q. Lu, L. Liu, F. Scarpa, J. Leng, Y. Liu, A novel composite multi-layer piezoelectric energy harvester. Compos. Struct. 201, 121–130 (2018)

    Article  Google Scholar 

  31. W. Martens, U. von Wagner, G. Litak, Stationary response of nonlinear magneto-piezoelectric energy harvester systems under stochastic excitation. Eur. Phys. J. Spec. Top. 222(7), 1665–1673 (2013)

    Article  Google Scholar 

  32. F.C. Moon, P.J. Holmes, A magnetoelastic strange attractor. J. Sound Vib. 65, 275–296 (1979)

    Article  ADS  Google Scholar 

  33. R. Naseer, H.L. Dai, A. Abdelkefi, L. Wang, Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics. Appl. Energy 203, 142–153 (2017)

    Article  Google Scholar 

  34. D. Pan, F. Dai, Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate. Energy Convers. Manag. 169, 149–160 (2018)

    Article  Google Scholar 

  35. T. Pereira, A. Paula, A. Fabro, M. Savi. Random effects in a nonlinear vibration-based piezoelectric energy harvesting system. Int. J. Bifurc. Chaos, (in press) (2019)

    Google Scholar 

  36. J.V.L.L. Peterson, V.G. Lopes, A. Cunha Jr., Dynamic analysis and characterization of a nonlinear bi-stable piezo-magneto-elastic energy harvester, in MATEC Web of Conferences vol. 241 (2018), p. 01001

    Google Scholar 

  37. D. Puspitarini, A. Suzianti, H. Al Rasyid, Designing a sustainable energy-harvesting stairway: determining product specifications using triz method. Procedia Soc. Behav. Sci. 216, 938–947, in Urban Planning and Architectural Design for Sustainable Development (UPADSD) (2016)

    Google Scholar 

  38. T.M.P. Silva, M.A. Clementino, A. Erturk, C. de Marqui Jr., Equivalent electrical circuit framework for nonlinear and high quality factor piezoelectric structures. Mechatronics 54, 133–143 (2018)

    Article  Google Scholar 

  39. S. Stoykov, G. Litak, E. Manoach, Vibration energy harvesting by a timoshenko beam model and piezoelectric transducer. Eur. Phys. J. Spec. Top. 224(14), 2755–2770 (2015)

    Article  Google Scholar 

  40. M.A. Trindade, C.C. Pagani, L.P.R. Oliveira, Semi-modal active vibration control of plates using discrete piezoelectric modal filters. J. Sound Vib. 351, 17–28 (2015)

    Article  ADS  Google Scholar 

  41. K. Vijayan, M.I. Friswell, H. Haddad Khodaparast, S. Adhikari, Non-linear energy harvesting from coupled impacting beams. Int. J. Mech. Sci. 96-97, 101–109 (2015)

    Article  Google Scholar 

  42. C. Wang, Q. Zhang, W. Wang, J. Feng, A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mech. Syst. Signal Process. 112, 305–318 (2018)

    Article  ADS  Google Scholar 

  43. C. Wei, X. Jing, A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sustain. Energy Rev. 74, 1–18 (2017)

    Article  Google Scholar 

  44. X.D. Xie, Q. Wang, S.J. Wang, Energy harvesting from high-rise buildings by a piezoelectric harvester device. Energy 93, 1345–1352 (2015)

    Article  Google Scholar 

  45. Z. Zhou, W. Qin, W. Du, P. Zhu, Q. Liu, Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function. Mech. Syst. Signal Process. 115, 162–172 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support given to this research by the funding agencies Carlos Chagas Filho Research Foundation of Rio de Janeiro State (FAPERJ) under grants E-26/010.002.178/2015 and E-26/010.000.805/2018, and Coordenação de Aperfeiçoamento de Pessoal de Ní­vel Superior–Brasil (CAPES)–Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Americo Cunha Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopes, V.G., Peterson, J.V.L.L., Cunha Jr., A. (2019). Nonlinear Characterization of a Bistable Energy Harvester Dynamical System. In: Belhaq, M. (eds) Topics in Nonlinear Mechanics and Physics. Springer Proceedings in Physics, vol 228. Springer, Singapore. https://doi.org/10.1007/978-981-13-9463-8_3

Download citation

Publish with us

Policies and ethics