Skip to main content

Sarcopenia in Liver Disease

  • Chapter
  • First Online:
The Evolving Landscape of Liver Cirrhosis Management

Abstract

Because skeletal muscle is the largest store of proteins in the body, protein homeostasis is essential for the maintenance of skeletal muscle mass. Aging disrupts the balance between protein synthesis and breakdown in skeletal muscle, resulting in muscle strength decline, walking disorders, falls, and other problems. The decreased muscle mass and muscle strength that accompanies aging is defined as primary sarcopenia, while the decreased muscle mass and muscle strength that accompanies an underlying disease is defined as secondary sarcopenia. Several potential biomarkers associated with skeletal muscle mass loss have been reported. The most conceivable mechanism which can cause sarcopenia in patients with liver disease is protein energy malnutrition. Skeletal muscle mass is not only a good indicator of nutrition in patients with liver disease, but also has recently been shown to be closely related to survival in patients with liver disease. In 2016, the Japan Society of Hepatology established its own assessment criteria for sarcopenia in liver disease as the number of liver disease patients with sarcopenia is expected to increase and there is compelling evidence to indicate patients with sarcopenia have unfavorable clinical outcomes, and in subsequent several studies, its usefulness was validated. On the other hand, exercise and branched-chain amino acid supplementation may be recommended in sarcopenic patients with liver disease. Here, in this article, we will summarize the current knowledge of sarcopenia in liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AWGS:

Asian Working Group for Sarcopenia

BCAA:

Branched-chain amino acid

BIA:

Bio-impedance analysis

CT:

Computed tomography

HCC:

Hepatocellular carcinoma

JSH:

Japan Society of Hepatology

L3:

The third lumbar level

LC:

Liver cirrhosis

MELD:

Model for end-stage liver disease

MMD:

Muscle mass decrease

NAFLD:

Nonalcoholic fatty liver disease

OS:

Overall survival

PEM:

Protein energy malnutrition

PMI:

Psoas muscle index

PS:

Performance status

RCT:

Randomized controlled trial

References

  1. Cruz-Jentoft AJ, Landi F, Schneider SM, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748–59.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014;11(3):177–80.

    PubMed  PubMed Central  Google Scholar 

  3. Rosenberg I. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989;50:1231–3.

    Article  Google Scholar 

  4. Thompson DD. Aging and sarcopenia. J Musculoskelet Neuronal Interact. 2007;7:344–5.

    CAS  PubMed  Google Scholar 

  5. Nishikawa H, Yoh K, Enomoto H, et al. Factors associated with protein-energy malnutrition in chronic liver disease: analysis using indirect calorimetry. Medicine (Baltimore). 2016;95(2):e2442.

    Article  CAS  Google Scholar 

  6. Sinclair M, Gow PJ, Grossmann M, Angus PW. Review article: sarcopenia in cirrhosis—aetiology, implications and potential therapeutic interventions. Aliment Pharmacol Ther. 2016;43(7):765–77.

    Article  CAS  PubMed  Google Scholar 

  7. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65(6):1232–44.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nishikawa H, Enomoto H, Ishii A, et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle. 2017;8(6):915–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387:83–90.

    Article  CAS  PubMed  Google Scholar 

  10. Elkina Y, von Haehling S, Anker SD, Springer J. The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle. 2011;2(3):143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rinnov AR, Plomgaard P, Pedersen BK, Gluud LL. Impaired follistatin secretion in cirrhosis. J Clin Endocrinol Metab. 2016;101(9):3395–400.

    Article  CAS  PubMed  Google Scholar 

  12. Harimoto N, Yoshizumi T, Shimokawa M, et al. Sarcopenia is a poor prognostic factor following hepatic resection in patients 70 years of age and older with hepatocellular carcinoma. Hepatol Res. 2016;46(12):1247–55.

    Article  PubMed  Google Scholar 

  13. Higashi T, Hayashi H, Taki K, et al. Sarcopenia, but not visceral fat amount, is a risk factor of postoperative complications after major hepatectomy. Int J Clin Oncol. 2016;21(2):310–9.

    Article  PubMed  Google Scholar 

  14. Fujiwara N, Nakagawa H, Kudo Y, et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol. 2015;63(1):131–40.

    Article  CAS  PubMed  Google Scholar 

  15. Itoh S, Shirabe K, Matsumoto Y, et al. Effect of body composition on outcomes after hepatic resection for hepatocellular carcinoma. Ann Surg Oncol. 2014;21(9):3063–8.

    Article  PubMed  Google Scholar 

  16. Nishikawa H, Nishijima N, Enomoto H, et al. Prognostic significance of sarcopenia in patients with hepatocellular carcinoma undergoing sorafenib therapy. Oncol Lett. 2017;14(2):1637–47.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ha Y, Kim D, Han S, et al. Sarcopenia predicts prognosis in patients with newly diagnosed hepatocellular carcinoma, independent of tumor stage and liver function. Cancer Res Treat. 2017;50:843. https://doi.org/10.4143/crt.2017.232. [Epub ahead of print].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Begini P, Gigante E, Antonelli G, et al. Sarcopenia predicts reduced survival in patients with hepatocellular carcinoma at first diagnosis. Ann Hepatol. 2017;16(1):107–14.

    Article  PubMed  Google Scholar 

  19. Voron T, Tselikas L, Pietrasz D, et al. Sarcopenia impacts on short- and long-term results of hepatectomy for hepatocellular carcinoma. Ann Surg. 2015;261(6):1173–83.

    Article  PubMed  Google Scholar 

  20. Zhang G, Meng S, Li R, Ye J, Zhao L. Clinical significance of sarcopenia in the treatment of patients with primary hepatic malignancies, a systematic review and meta-analysis. Oncotarget. 2017;8(60):102474–85.

    PubMed  PubMed Central  Google Scholar 

  21. Nishikawa H, Shiraki M, Hiramatsu A, Moriya K, Hino K, Nishiguchi S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol Res. 2016;46(10):951–63.

    Article  PubMed  Google Scholar 

  22. Nishikawa H, Enomoto H, Iwata Y, Nishimura T, Iijima H, Nishiguchi S. Clinical utility of bioimpedance analysis in liver cirrhosis. J Hepatobiliary Pancreat Sci. 2017;24(7):409–16.

    Article  PubMed  Google Scholar 

  23. Yuri Y, Nishikawa H, Enomoto H, et al. Implication of psoas muscle index on survival for hepatocellular carcinoma undergoing radiofrequency ablation therapy. J Cancer. 2017;8(9):1507–16.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hiraoka A, Michitaka K, Kiguchi D, et al. Efficacy of branched-chain amino acid supplementation and walking exercise for preventing sarcopenia in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29(12):1416–23.

    Article  CAS  PubMed  Google Scholar 

  25. Román E, Torrades MT, Nadal MJ, et al. Randomized pilot study: effects of an exercise programme and leucine supplementation in patients with cirrhosis. Dig Dis Sci. 2014;59(8):1966–75.

    Article  PubMed  Google Scholar 

  26. Nishikawa H, Osaki Y. Clinical significance of therapy using branched-chain amino acid granules in patients with liver cirrhosis and hepatocellular carcinoma. Hepatol Res. 2014;44(2):149–58.

    Article  CAS  PubMed  Google Scholar 

  27. Kawaguchi T, Izumi N, Charlton MR, Sata M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology. 2011;54(3):1063–70.

    Article  CAS  PubMed  Google Scholar 

  28. Hanai T, Shiraki M, Nishimura K, et al. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition. 2015;31(1):193–9.

    Article  PubMed  Google Scholar 

  29. Zenith L, Meena N, Ramadi A, et al. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12(11):1920–6.

    Article  PubMed  Google Scholar 

  30. Salo J, Guevara M, Fernandez-Esparrach G, et al. Impairment of renal function during moderate physical exercise in cirrhotic patients with ascites: relationship with the activity of neurohormonal systems. Hepatology. 1997;25:1338–42.

    Article  CAS  PubMed  Google Scholar 

  31. Yoh K, Nishikawa H, Enomoto H, et al. Effect of physical exercise on sarcopaenia in patients with overt hepatic encephalopathy: a study protocol for a randomised controlled trial. BMJ Open Gastroenterol. 2017;4(1):e000185.

    PubMed  PubMed Central  Google Scholar 

  32. Blau HM, Cosgrove BD, Ho AT. The central role of muscle stem cells in regenerative failure with aging. Nat Med. 2015;21(8):854–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dasarathy S. Cause and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol. 2016;32(3):159–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanai T, Shiraki M, Ohnishi S, et al. Rapid skeletal muscle wasting predicts worse survival in patients with liver cirrhosis. Hepatol Res. 2016;46(8):743–51.

    Article  CAS  PubMed  Google Scholar 

  35. Anand AC. Nutrition and muscle in cirrhosis. J Clin Exp Hepatol. 2017;7(4):340–57.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moriwaki H, Miwa Y, Tajika M, Kato M, Fukushima H, Shiraki M. Branched-chain amino acids as a protein- and energy-source in liver cirrhosis. Biochem Biophys Res Commun. 2004;313(2):405–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kamachi S, Mizuta T, Otsuka T, et al. Sarcopenia is a risk factor for the recurrence of hepatocellular carcinoma after curative treatment. Hepatol Res. 2016;46(2):201–8.

    Article  CAS  PubMed  Google Scholar 

  38. Iritani S, Imai K, Takai K, et al. Skeletal muscle depletion is an independent prognostic factor for hepatocellular carcinoma. J Gastroenterol. 2015;50(3):323–32.

    Article  CAS  PubMed  Google Scholar 

  39. Masuda T, Shirabe K, Ikegami T, et al. Sarcopenia is a prognostic factor in living donor liver transplantation. Liver Transpl. 2014;20(4):401–7.

    Article  PubMed  Google Scholar 

  40. Harimoto N, Shirabe K, Yamashita YI, et al. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br J Surg. 2013;100(11):1523–30.

    Article  CAS  PubMed  Google Scholar 

  41. Kaido T, Ogawa K, Fujimoto Y, et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant. 2013;13(6):1549–56.

    Article  CAS  PubMed  Google Scholar 

  42. Hamaguchi Y, Kaido T, Okumura S, et al. Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. Liver Transpl. 2014;20(11):1413–9.

    Article  PubMed  Google Scholar 

  43. Montano-Loza AJ. New concepts in liver cirrhosis: clinical significance of sarcopenia in cirrhotic patients. Minerva Gastroenterol Dietol. 2013;59(2):173–86.

    CAS  PubMed  Google Scholar 

  44. Iwasa M, Sugimoto R, Takei Y. Patients with hyponatremic cirrhosis have low-grade cerebral edema and poor quality-of-life. Ann Hepatol. 2014;13(3):407–8.

    Article  PubMed  Google Scholar 

  45. Shiraki M, Nishiguchi S, Saito M, et al. Nutritional status and quality of life in current patients with liver cirrhosis as assessed in 2007-2011. Hepatol Res. 2013;43(2):106–12.

    Article  PubMed  Google Scholar 

  46. Hsu CY, Lee YH, Hsia CY, et al. Performance status in patients with hepatocellular carcinoma: determinants, prognostic impact, and ability to improve the Barcelona Clinic Liver Cancer system. Hepatology. 2013;57(1):112–9.

    Article  PubMed  Google Scholar 

  47. Nishikawa H, Kita R, Kimura T, et al. Clinical implication of performance status in patients with hepatocellular carcinoma complicating with cirrhosis. J Cancer. 2015;6(4):394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One. 2017;12(10):e0186990.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, Baracos VE, Sawyer MB, Pang JX, Beaumont C, Esfandiari N, Myers RP. Inclusion of sarcopenia within MELD (MELD-Sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol. 2015;6:e102.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wijarnpreecha K, Panjawatanan P, Thongprayoon C, Jaruvongvanich V, Ungprasert P. Sarcopenia and risk of nonalcoholic fatty liver disease: a meta-analysis. Saudi J Gastroenterol. 2018;24(1):12–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhai Y, Xiao Q. The common mechanisms of sarcopenia and NAFLD. Biomed Res Int. 2017;2017:6297651.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee DC, Shook RP, Drenowatz C, Blair SN. Physical activity and sarcopenic obesity: definition, assessment, prevalence and mechanism. Future Sci OA. 2016;2(3):FSO127.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: the risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology. 2017;66(6):2055–65.

    Article  CAS  PubMed  Google Scholar 

  54. Montano-Loza AJ, Angulo P, Meza-Junco J, et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle. 2016;7(2):126–35.

    Article  PubMed  Google Scholar 

  55. Hara N, Iwasa M, Sugimoto R, et al. Sarcopenia and sarcopenic obesity are prognostic factors for overall survival in patients with cirrhosis. Intern Med. 2016;55(8):863–70.

    Article  CAS  PubMed  Google Scholar 

  56. Kim TN, Park MS, Ryu JY, et al. Impact of visceral fat on skeletal muscle mass and vice versa in a prospective cohort study: the Korean Sarcopenic Obesity Study (KSOS). PLoS One. 2014;9(12):e115407.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95–101.

    Article  PubMed  Google Scholar 

  58. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39:412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dasarathy S. Myostatin and beyond in cirrhosis: all roads lead to sarcopenia. J Cachexia Sarcopenia Muscle. 2017;8(6):864–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dasarathy S, McCullough AJ, Muc S, et al. Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol. 2011;54(5):915–21.

    Article  CAS  PubMed  Google Scholar 

  61. Kitajima Y, Takahashi H, Akiyama T, et al. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J Gastroenterol. 2018;53:427. https://doi.org/10.1007/s00535-017-1370-x. [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  62. Anderson LJ, Liu H, Garcia JM. Sex differences in muscle wasting. Adv Exp Med Biol. 2017;1043:153–97.

    Article  CAS  PubMed  Google Scholar 

  63. Sinclair M, Grossmann M, Hoermann R, Angus PW, Gow PJ. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol. 2016;65(5):906–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank all medical staff in our hospital.

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishikawa, H., Nishiguchi, S. (2019). Sarcopenia in Liver Disease. In: Yoshiji, H., Kaji, K. (eds) The Evolving Landscape of Liver Cirrhosis Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-7979-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7979-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7663-4

  • Online ISBN: 978-981-13-7979-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics