Skip to main content

Perfect Absorption of Light

  • Chapter
  • First Online:
Engineering Optics 2.0

Abstract

The absorption of light refers to the conversion of photons and electromagnetic waves to other kinds of energy such as heat and photo-generated carriers. In classic optics, absorbers are characterized by how black they are; thus, an ideal absorber should be black as much as possible. In EO 2.0, the elaborately designed subwavelength structures not only provide a mean to realize ultra-black absorbers, but also enable the precise control of absorption spectrum in the entire electromagnetic spectrum ranging from microwave to ultraviolet band. In this chapter, we give a discussion of various narrow and broadband optical absorbers with special attentions paid on wide-angle, transparent, and refractory absorbers, which show great advantages over their traditional counterparts. Their applications in bolometers, solar cells, and sensors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Black body. https://en.wikipedia.org/wiki/Black_body

  2. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 106, 6044–6047 (2009)

    Article  CAS  Google Scholar 

  3. M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son & Co., 1914)

    Google Scholar 

  4. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. R. Soc. Lond. 18, 269 (1902)

    Google Scholar 

  5. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968)

    Article  CAS  Google Scholar 

  6. W.W. Salisbury, Absorbent body for electromagnetic waves, U.S. Patent 2599944, 1952

    Google Scholar 

  7. E.F. Knott, J.F. Shaeffer, M.T. Tuley, Radar Cross Section, 2nd edn. (SciTech Publishing, 2004)

    Google Scholar 

  8. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  CAS  Google Scholar 

  9. C. Hu, X. Li, Q. Feng, X. Chen, X. Luo, Introducing dipole-like resonance into magnetic resonance to realize simultaneous drop in transmission and reflection at terahertz frequency. J. Appl. Phys. 108 (2010)

    Google Scholar 

  10. C. Hu, X. Li, Q. Feng, X. Chen, X. Luo, Investigation on the role of the dielectric loss in metamaterial absorber. Opt. Express 18, 6598–6603 (2010)

    Article  CAS  Google Scholar 

  11. Y. Guo, L. Yan, W. Pan, B. Luo, X. Luo, Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs. Plasmonics 9, 951–957 (2014)

    Article  CAS  Google Scholar 

  12. Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)

    Article  CAS  Google Scholar 

  13. Y. Huang, M. Pu, P. Gao, Z. Zhao, X. Li, X. Ma, X. Luo, Ultra-broadband large-scale infrared perfect absorber with optical transparency. Appl. Phys. Express 10, 112601 (2017)

    Article  Google Scholar 

  14. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, X. Luo, A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale 10, 8298–8303 (2018)

    Article  CAS  Google Scholar 

  15. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)

    Article  CAS  Google Scholar 

  16. M. Pu, Q. Feng, C. Hu, X. Luo, Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7, 733–738 (2012)

    Article  CAS  Google Scholar 

  17. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, An equivalent realization of coherent perfect absorption under single beam illumination. Sci. Rep. 4, 7369 (2014)

    Article  CAS  Google Scholar 

  18. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301(R) (2015)

    Article  Google Scholar 

  19. C. Yan, M. Pu, J. Luo, Y. Huang, X. Li, X. Ma, X. Luo, Coherent perfect absorption of electromagnetic wave in subwavelength structures. Opt. Laser Technol. 101, 499–506 (2018)

    Article  CAS  Google Scholar 

  20. M. Wang, C. Hu, M. Pu, C. Huang, X. Ma, X. Luo, Electrical tunable L-band absorbing material for two polarisations. Electron. Lett. 48, 1002–1003 (2012)

    Article  Google Scholar 

  21. X. Wu, C. Hu, Y. Wang, M. Pu, C. Huang, C. Wang, X. Luo, Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv. 3, 022114 (2013)

    Article  Google Scholar 

  22. N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79 (2009)

    Google Scholar 

  23. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181–7188 (2008)

    Article  Google Scholar 

  24. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)

    Article  CAS  Google Scholar 

  25. C. Hu, Z. Zhao, X. Chen, X. Luo, Realizing near-perfect absorption at visible frequencies. Opt. Express 17, 11039–11044 (2009)

    Article  CAS  Google Scholar 

  26. M. Pu, X. Ma, X. Li, Y. Guo, X. Luo, Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 5, 4361–4378 (2017)

    Article  CAS  Google Scholar 

  27. T.V. Teperik, F.J. García de Abajo, A.G. Borisov, M. Abdelsalam, P.N. Bartlett, Y. Sugawara, J.J. Baumberg, Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2, 299–301 (2008)

    Article  CAS  Google Scholar 

  28. C. Hu, L. Liu, Z. Zhao, X. Chen, X. Luo, Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. Opt. Express 17, 16745–16749 (2009)

    Article  CAS  Google Scholar 

  29. Y.Q. Ye, Y. Jin, S. He, Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B 27, 498–504 (2010)

    Article  CAS  Google Scholar 

  30. X. Shen, T.J. Cui, J. Zhao, H.F. Ma, W.X. Jiang, H. Li, Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19, 9401–9407 (2011)

    Article  CAS  Google Scholar 

  31. J. Grant, Y. Ma, S. Saha, A. Khalid, D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 3476–3478 (2011)

    Article  CAS  Google Scholar 

  32. L. Huang, D.R. Chowdhury, S. Ramani, M.T. Reiten, S.-N. Luo, A.J. Taylor, H.-T. Chen, Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt. Lett. 37, 154–156 (2012)

    Article  Google Scholar 

  33. Y. Cui, J. Xu, K.H. Fung, Y. Jin, A. Kumar, S. He, N.X. Fang, A thin film broadband absorber based on multi-sized nanoantennas. Appl. Phys. Lett. 99, 253101 (2011)

    Article  Google Scholar 

  34. F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 3506 (2012)

    Google Scholar 

  35. Y. Cui, K.H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N.X. Fang, Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012)

    Article  CAS  Google Scholar 

  36. J. Sun, L. Liu, G. Dong, J. Zhou, An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19, 21155–21162 (2011)

    Article  CAS  Google Scholar 

  37. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, X. Luo, Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt. Express 21, 11618–11627 (2013)

    Article  CAS  Google Scholar 

  38. Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep. 5, 8434 (2015)

    Article  CAS  Google Scholar 

  39. M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)

    Article  CAS  Google Scholar 

  40. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Article  Google Scholar 

  41. M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo, Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. 5, 1800835 (2018)

    Article  Google Scholar 

  42. Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, X. Luo, Catenary electromagnetics for ultrabroadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 1801691 (2019)

    Google Scholar 

  43. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)

    Google Scholar 

  44. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111, 187402 (2013)

    Article  Google Scholar 

  45. M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, X. Luo, Engineering heavily doped silicon for broadband absorber in the terahertz regime. Opt. Express 20, 25513–25519 (2012)

    Article  CAS  Google Scholar 

  46. S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, Y. Ma, High-performance terahertz wave absorbers made of silicon-based metamaterials. Appl. Phys. Lett. 107, 073903 (2015)

    Article  Google Scholar 

  47. X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, S. Zhuang, Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Sci. Rep. 5, 8091 (2015)

    Article  Google Scholar 

  48. J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, X. Luo, An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques. IEEE Photonics J. 1–1 (2018)

    Google Scholar 

  49. J.A. Bossard, L. Lin, S. Yun, L. Liu, D.H. Werner, T.S. Mayer, Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8, 1517–1524 (2014)

    Article  CAS  Google Scholar 

  50. W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)

    Article  CAS  Google Scholar 

  51. K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48, 1230–1234 (2000)

    Article  Google Scholar 

  52. Y. Wang, X. Ma, X. Li, M. Pu, X. Luo, Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron. Adv. 1, 180013 (2018)

    Google Scholar 

  53. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, 2007)

    Google Scholar 

  54. W. Woltersdorff, Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot. Z. Für Phys. Hadrons Nucl. 91, 230–252 (1934)

    Article  CAS  Google Scholar 

  55. Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)

    Article  CAS  Google Scholar 

  56. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, X. Luo, Truncated spherical voids for nearly omnidirectional optical absorption. Opt. Express 19, 20642–20649 (2011)

    Article  Google Scholar 

  57. T. Jang, H. Youn, Y.J. Shin, L.J. Guo, Transparent and flexible polarization-independent microwave broadband absorber. ACS Photonics 1, 279–284 (2014)

    Article  CAS  Google Scholar 

  58. W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014)

    Article  CAS  Google Scholar 

  59. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010)

    Article  CAS  Google Scholar 

  60. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)

    Article  CAS  Google Scholar 

  61. M.-G. Kang, T. Xu, H.J. Park, X. Luo, L.J. Guo, Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv. Mater. 22, 4378 (2010)

    Article  CAS  Google Scholar 

  62. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014)

    Article  CAS  Google Scholar 

  63. Z. Yu, A. Raman, S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. 107, 17491–17496 (2010)

    Article  CAS  Google Scholar 

  64. P. Wang, R. Menon, Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt. Express 22, A99–A110 (2014)

    Article  Google Scholar 

  65. T. Lai, Q. Hou, H. Yang, X. Luo, M. Xi, Clinical application of a novel sliver nanoparticles biosensor based on localized surface plasmon resonance for detecting the microalbuminuria. Acta Biochim. Biophys. Sin. 42, 787–792 (2010)

    Article  CAS  Google Scholar 

  66. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010)

    Article  CAS  Google Scholar 

  67. M. Pu, C. Hu, C. Huang, C. Wang, Z. Zhao, Y. Wang, X. Luo, Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt. Express 21, 992–1001 (2013)

    Article  Google Scholar 

  68. J. Fang, M. Zhang, F. Zhang, H. Yu, Plasmonic sensor based on Fano resonance. Opto-Electron. Eng. 44, 221–225 (2017)

    Google Scholar 

  69. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D.N. Neshev, Y.S. Kivshar, H. Altug, Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105 (2018)

    Article  CAS  Google Scholar 

  70. M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, X. Luo, Fano resonance induced by mode coupling in all-dielectric nanorod array. Appl. Phys. Express 7, 032002 (2014)

    Article  Google Scholar 

  71. M. Song, H. Yu, C. Wang, N. Yao, M. Pu, J. Luo, Z. Zhang, X. Luo, Sharp Fano resonance induced by a single layer of nanorods with perturbed periodicity. Opt. Express 23, 2895–2903 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Perfect Absorption of Light. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_13

Download citation

Publish with us

Policies and ethics