Skip to main content

Energy Harvesting Techniques for Powering Wireless Sensor Networks in Aircraft Applications: A Review

  • Chapter
  • First Online:
Sensors for Automotive and Aerospace Applications

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

In the recent years, wireless sensors (WS) have utilized for various structural applications such as structural health monitoring and flight tests. The conventional battery system to power these sensors is inefficient due to several limitations including heavyweight, large size, less power output, short cycle life, and requirement of their replacements. Therefore energy harvesting systems are gaining much research attention to build the self-powered WS. The energy harvesting unit can directly extract the energy from the local environment such as pressure, vibration, wind, thermal gradients and the solar source. The reported energy harvesting methods are piezoelectric, triboelectric, thermoelectric, electromagnetic, and magnetostrictive. This review focuses on the different energy harvesting techniques and challenges of their integration with the WS for the aircraft applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alippi C, Galperti C (2008) An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. IEEE Trans Circuits Syst I Regul Pap 55(6):1742–1750

    Article  MathSciNet  Google Scholar 

  • Arms SW, Townsend CP, Churchill DL, Hamel MJ (2010) Energy harvesting, wireless structural health monitoring system, Google Patents

    Google Scholar 

  • Beeby SP, Torah R, Tudor M, Glynne-Jones P, O’donnell T, Saha C, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257

    Article  Google Scholar 

  • Blystad L-CJ, Halvorsen E, Husa S (2010) Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations. IEEE Trans Ultrasonics Ferroelectr Freq Control 57(4)

    Article  Google Scholar 

  • Bubnova O, Chrispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5:9345–9362

    Article  Google Scholar 

  • Carlson EJ, Strunz K, Otis BP (2010) A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J Solid-State Circuits 45(4):741–750

    Article  Google Scholar 

  • Cheng T, Zhang Y, Lai WY, Huang W (2015) Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv Mater 27(22):3349–3376

    Article  Google Scholar 

  • Ciang CC, Lee J-R, Bang H-J (2008) Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas Sci Technol 19(12):122001

    Article  Google Scholar 

  • Collins J (2006) The challenges facing US navy aircraft electrical wiring systems. In: Proceedings of the 9th annual aging aircraft conference

    Google Scholar 

  • Costanzo A, Dionigi M, Masotti D, Mongiardo M, Monti G, Tarricone L, Sorrentino R (2014) Electromagnetic energy harvesting and wireless power transmission: a unified approach. Proc IEEE 102(11):1692–1711

    Article  Google Scholar 

  • Crispin DX (2012) Retracted article: towards polymer-based organic thermoelectric generators. Energy Environ Sci

    Google Scholar 

  • de Jong P, Loendersloot R, de Boer A, van der Hoogt P (2011) Power harvesting in a helicopter lag damper. In: Proceedings of SMART 2011, University of Saarland

    Google Scholar 

  • Dickerson SM (2011) CH-47D rotating system fault sensing for condition based maintenance, Air Force Inst of Tech Wright-Patters on AFB OH School of Engineering and Management

    Google Scholar 

  • Dilhac J-M, Bafleur M (2014) Energy harvesting in aeronautics for battery-free wireless sensor networks. IEEE Aerosp Electron Syst Mag 29(8):18–22

    Article  Google Scholar 

  • Ducharme MB (2006) Heat stress of helicopter aircrew wearing immersion suit. Ind Health 44(3):433–440

    Article  Google Scholar 

  • Dumas D, Lani F, Monnier T, Smaili R, Loyer J (2011) Damage detection in composite structures using autonomous wireless systems: simulation and validation. J Phys Conf Series, IOP Publishing

    Google Scholar 

  • Elefsiniotis A, Kokorakis N, Becker T, Schmid U (2014) A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft. Sens Actuators A 206:159–164

    Article  Google Scholar 

  • Erturk A (2009) Electromechanical modeling of piezoelectric energy harvesters, Virginia Tech

    Google Scholar 

  • Ferdous RM, Reza AW, Siddiqui MF (2016) Renewable energy harvesting for wireless sensors using passive RFID tag technology: a review. Renew Sustain Energy Rev 58:1114–1128

    Article  Google Scholar 

  • Fu Y, Wu H, Ye S, Cai X, Yu X, Hou S, Kafafy H, Zou D (2013) Integrated power fiber for energy conversion and storage. Energy Environ Sci 6(3):805–812

    Article  Google Scholar 

  • Gao X-Z, Hou Z-X, Guo Z, Chen X-Q (2015) Reviews of methods to extract and store energy for solar-powered aircraft. Renew Sustain Energy Rev 44:96–108

    Article  Google Scholar 

  • Glynne-Jones P, Tudor MJ, Beeby SP, White NM (2004) An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens Actuators A 110(1–3):344–349

    Article  Google Scholar 

  • Gogotsi Y (2014) Materials science: energy storage wrapped up. Nature 509(7502):568

    Article  Google Scholar 

  • Hadas Z, Kurfurst J, Ondrusek C, Singule V (2012a) Artificial intelligence based optimization for vibration energy harvesting applications. Microsyst Technol 18(7–8):1003–1014

    Article  Google Scholar 

  • Hadas Z, Vetiska V, Singule V, Andrs O, Kovar J, Vetiska J (2012b) Energy harvesting from mechanical shocks using a sensitive vibration energy harvester. Int J Adv Rob Syst 9(5):225

    Article  Google Scholar 

  • Hespanha JP, Naghshtabrizi P, Xu Y (2007) A survey of recent results in networked control systems. Proc IEEE 95(1):138–162

    Article  Google Scholar 

  • Hu Y, Zhang Y, Xu C, Lin L, Snyder RL, Wang ZL (2011) Self-powered system with wireless data transmission. Nano Lett 11(6):2572–2577

    Article  Google Scholar 

  • Hwang GT, Annapureddy V, Han JH, Joe DJ, Baek C, Park DY, Kim DH, Park JH, Jeong CK, Park KI (2016) Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv Energy Mat 6(13):1600237

    Article  Google Scholar 

  • Iezzi B, Ankireddy K, Twiddy J, Losego MD, Jur JS (2017) Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors. Appl Energy 208:758–765

    Article  Google Scholar 

  • Irimia-Vladu M (2014) “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 43(2):588–610

    Article  Google Scholar 

  • Jafari H, Ghodsi A, Azizi S, Ghazavi MR (2017) Energy harvesting based on magnetostriction, for low frequency excitations. Energy 124:1–8

    Article  Google Scholar 

  • Klöckner A, Schlabe D, Looye G (2012) Integrated simulation models for high-altitude solar-powered aircraft. In: AIAA modeling and simulation technologies conference

    Google Scholar 

  • Kordes EE, Reed RD (1962) Structural heating experiences on the X-15 airplane, National Aeronautics and Space Administration Washington DC

    Google Scholar 

  • Kumar B et al (2011) Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. Acs Nano 5.5: 4197–4204

    Article  Google Scholar 

  • Lallart M (2008) Amélioration de la conversion électroactive de matériaux piézoélectriques et pyroélectriques pour le contrôle vibratoire et la récupération d’énergie-Application au contrôle de santé structurale auto-alimenté, INSA de Lyon

    Google Scholar 

  • Lallart M, Anton SR, Inman DJ (2010) Frequency self-tuning scheme for broadband vibration energy harvesting. J Intell Mater Syst Struct 21(9):897–906

    Article  Google Scholar 

  • Le MQ, Capsal J-F, Lallart M, Hebrard Y, Van Der Ham A, Reffe N, Geynet L, Cottinet P-J (2015) Review on energy harvesting for structural health monitoring in aeronautical applications. Prog Aerosp Sci 79:147–157

    Article  Google Scholar 

  • Leamon TM, Townsend CP, Churchill DL, Hamel MJ Energy harvesters for rotorcraft wireless sensor networks

    Google Scholar 

  • Liu Z, Xu J, Chen D, Shen G (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44(1):161–192

    Article  Google Scholar 

  • Ma D, Lan G, Xu, M. Hassan and W. Hu (2018). SEHS: simultaneous energy harvesting and sensing using piezoelectric energy harvester. internet-of-things design and implementation (IoTDI). In: 2018 IEEE/ACM third international conference on, IEEE

    Google Scholar 

  • Mitchell B (2007) Energy harvesting applications and architectures at Boeing commercial airplanes. NanoPower Forum, San Jose

    Google Scholar 

  • Monthéard R, Airiau C, Bafleur M, Boitier V, Dilhac J-M, Dollat X, Nolhier N, Piot E (2014) Powering a commercial datalogger by energy harvesting from generated aeroacoustic noise. J Phys Conf Series, IOP Publishing

    Google Scholar 

  • Park H, Kim JW, Hong SY, Lee G, Kim DS, Oh JH, Jin SW, Jeong YR, Oh SY, Yun JY (2018) Microporous polypyrrole‐coated graphene foam for high‐performance multifunctional sensors and flexible supercapacitors. Adv Func Mat 1707013

    Google Scholar 

  • Patel V, Sundriyal P, Bhattacharya S (2017) Aloe vera versus poly (ethylene) glycol-based synthesis and relative catalytic activity investigations of ZnO nanorods in thermal decomposition of potassium perchlorate. Part Sci Technol 35(3):361–368

    Article  Google Scholar 

  • Pearson MR, Eaton MJ, Pullin R, Featherston CA, Holford KM (2012). Energy harvesting for aerospace structural health monitoring systems. J Phys Conf Series, IOP Publishing

    Google Scholar 

  • Pu X, Hu W, Wang ZL (2018) Toward wearable self-charging power systems: the integration of energy-harvesting and storage devices. Small 14(1):1702817

    Article  Google Scholar 

  • Raghunathan V, Kansal A, Hsu J, Friedman J, Srivastava M (2005) Design considerations for solar energy harvesting wireless embedded systems. In: Proceedings of the 4th international symposium on Information processing in sensor networks, IEEE Press

    Google Scholar 

  • Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. University of California, Berkeley, CA

    Google Scholar 

  • Samson D, Kluge M, Becker T, Schmid U (2010) Energy harvesting for autonomous wireless sensor nodes in aircraft. Proc Eng 5:1160–1163

    Article  Google Scholar 

  • Samson D, Kluge M, Becker T, Schmid U (2011) Wireless sensor node powered by aircraft specific thermoelectric energy harvesting. Sens Actuators A 172(1):240–244

    Article  Google Scholar 

  • Shahruz S (2006) Design of mechanical band-pass filters for energy scavenging. J Sound Vib 292(3–5):987–998

    Article  Google Scholar 

  • Smith SD (2006) Seat vibration in military propeller aircraft: characterization, exposure assessment, and mitigation. Aviat Space Environ Med 77(1):32–40

    MathSciNet  Google Scholar 

  • Sun F, Chaudhry ZA, Sarlashkar A (2018) Self-powered multi-functional structural health monitoring sensor, Google Patents

    Google Scholar 

  • Sundriyal P, Bhattacharya S (2017a) Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors. ACS Appl Mater Interf 9(44):38507–38521

    Article  Google Scholar 

  • Sundriyal P, Bhattacharya S (2017b) Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries. Mat Res Exp 4(3):035501

    Article  Google Scholar 

  • Sundriyal P, Bhattacharya S (2018) Inkjet-printed sensors on flexible substrates. In: Environmental, chemical and medical sensors, pp 89–113. Springer

    Google Scholar 

  • Tendeland T, Schlaff BA (1948) Temperature gradients in the wing of a high-speed airplane during dives from high altitudes

    Google Scholar 

  • Thostenson J, Li Z, Kim C, Ajnsztajn A, Parker C, Liu J, Peterchev A, Glass J, Goetz S (2018) Integrated flexible conversion circuit between a flexible photovoltaic and supercapacitors for powering wearable sensors. J Electrochem Soc 165(8):B3122–B3129

    Article  Google Scholar 

  • Vanhecke C, Assouère L, Wang A, Durand-Estèbe P, Caignet F, Dilhac J-M, Bafleur M (2015) Multisource and battery-free energy harvesting architecture for aeronautics applications. Power Electron IEEE Trans 30(6):3215–3227

    Article  Google Scholar 

  • Wang F, Jiang C, Tang C, Bi S, Wang Q, Du D, Song J (2016) High output nano-energy cell with piezoelectric nanogenerator and porous supercapacitor dual functions—a technique to provide sustaining power by harvesting intermittent mechanical energy from surroundings. Nano Energy 21:209–216

    Article  Google Scholar 

  • Wang L, Yuan FG (2007) Energy harvesting by magnetostrictive material (MsM) for powering wireless sensors in SHM. In: Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2007, International Society for Optics and Photonics

    Google Scholar 

  • Wei C, Jing X (2017) A comprehensive review on vibration energy harvesting: modelling and realization. Renew Sustain Energy Rev 74:1–18

    Article  Google Scholar 

  • Xu W, Huang LB, Wong MC, Chen L, Bai G, Hao J (2017) Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv Energy Mat 7(1):1601529

    Article  Google Scholar 

  • Xu X, Li S, Zhang H, Shen Y, Zakeeruddin SM, Graetzel M, Cheng Y-B, Wang M (2015) A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 9(2):1782–1787

    Article  Google Scholar 

  • Yun J, Song C, Lee H, Park H, Jeong YR, Kim JW, Jin SW, Oh SY, Sun L, Zi G (2018) Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 49:644–654

    Article  Google Scholar 

  • Zhao X, Qian T, Mei G, Kwan C, Zane R, Walsh C, Paing T, Popovic Z (2007) Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. Wireless approaches. Smart Mater Struct 16(4):1218

    Article  Google Scholar 

  • Zhong Y, Xia X, Mai W, Tu J, Fan HJ (2017) Integration of energy harvesting and electrochemical storage devices. Adv Mat Technol 2(12):1700182

    Article  Google Scholar 

  • Zhu D, Tudor MJ, Beeby SP (2009) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21(2):022001

    Article  Google Scholar 

  • Zi Y, Lin L, Wang J, Wang S, Chen J, Fan X, Yang PK, Yi F, Wang ZL (2015) Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv Mater 27(14):2340–2347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Poonam Sundriyal or Shantanu Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sundriyal, P., Bhattacharya, S. (2019). Energy Harvesting Techniques for Powering Wireless Sensor Networks in Aircraft Applications: A Review. In: Bhattacharya, S., Agarwal, A., Prakash, O., Singh, S. (eds) Sensors for Automotive and Aerospace Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3290-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3290-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3289-0

  • Online ISBN: 978-981-13-3290-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics