Skip to main content

Future Weather Data for Dynamic Building Energy Simulations: Overview of Available Data and Presentation of Newly Derived Data for Belgium

  • Chapter
  • First Online:
Energy Sustainability in Built and Urban Environments

Abstract

As buildings have a relatively long life span, it is important to consider climate change in energy performance modelling. Good quality weather data are needed to obtain accurate results. This chapter discusses widely used methods to predict future weather data (dynamical downscaling, stochastic weather generators and morphing) and provides an overview of available weather datasets (multi-year, typical years, extreme years and representative years) for building simulations. A Flemish office building is used for a comparative analysis of the estimated heating and cooling load making use of 1-year weather files (typical and extreme future climate conditions) derived from a recently developed convection-permitting climate model for Belgium. Climate models and weather generators are identified as the most preferred for the estimation of the average energy consumption and thermal comfort in average and extreme situations. Climate models have the advantage to better represent extreme weather events and climate differences due to territorial settings, while weather generators can generate multiple climate realizations. A combination of a typical year with an extreme cold and extreme warm year was found to result in an overall good representation of the energy need for heating and cooling in average and extreme weather conditions. Further, the influence of the methodological choices to extract 1-year weather files (typical or extreme years) from the 30-year climate data is highlighted as different results were obtained when different meteorological variables were considered for the creation of the 1-year files.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hadley Centre Coupled Model, version 3.

  2. 2.

    Medium-high emission scenario. One of the scenarios before the development of RCP scenarios to be used in GCMs for climate change.

  3. 3.

    Defined as “the cumulative squared hourly difference between the outdoor dry-bulb temperature and the adaptive thermal comfort temperature” (CIBSE 2014: p. 1).

  4. 4.

    EC-Earth is a global climate model developed by a European consortium (Hazeleger et al. 2010).

  5. 5.

    Consortium for small scale modelling in Climate mode is a regional climate model (Vanden Broucke 2017).

References

  • Adelard L, Boyer H, Garde F, Gatina J, Adelard L, Boyer H, Garde F, Detailed JG (2012) Detailed weather data generator for building simulations to cite this version: HAL Id: hal-00765831 a detailled weather data generator for buildings simulation, vol 31, 75–88

    Google Scholar 

  • Andrić I, Pina A, Ferrão P, Fournier J, Lacarrière B, Le Corre O (2017) The impact of climate change on building heat demand in different climate types. Energy Build 149. https://doi.org/10.1016/j.enbuild.2017.05.047

    Article  Google Scholar 

  • Architectenvenootschap ar-te bcvba (2015) Architectural plans and model BelOrta office building

    Google Scholar 

  • ASHRAE (2002) Brussels 064510 (IWEC)

    Google Scholar 

  • ASHRAE (2009) ASHRAE handbook-fundamentals, pp 21.1–21.67. https://doi.org/10.1017/cbo9781107415324.004

  • ASHRAE (2017) Chapter 14, Climatic design information. In: ASHRAE handbook-fundamentals

    Google Scholar 

  • Barnaby CS, Crawley DB (2011) Weather data for building performance simulation. In: Building performance simulation for design and operation

    Google Scholar 

  • Belcher S, Hacker J, Powell D (2005) Constructing design weather data for future climates. Build Serv Eng Res Technol 26:49–61. https://doi.org/10.1191/0143624405bt112oa

    Article  Google Scholar 

  • Berger T, Amann C, Formayer H, Korjenic A, Pospischal B, Neururer C, Smutny R (2014a) Impacts of climate change upon cooling and heating energy demand of office buildings in Vienna, Austria. Energy Build 80:517–530. https://doi.org/10.1016/j.enbuild.2014.03.084

    Article  Google Scholar 

  • Berger T, Amann C, Formayer H, Korjenic A, Pospichal B, Neururer C, Smutny R (2014b) Impacts of urban location and climate change upon energy demand of office buildings in Vienna. Austria Build Env 81:258–269. https://doi.org/10.1016/j.buildenv.2014.07.007

    Article  Google Scholar 

  • Brisson E, Demuzere M, Willems P, van Lipzig NPM (2014) Assessment of natural climate variability using a weather generator. Clim Dyn 44:495–508. https://doi.org/10.1007/s00382-014-2122-8

    Article  Google Scholar 

  • Brisson E, Van Weverberg K, Demuzere M, Devis A, Saeed S, Stengel M, van Lipzig NPM (2016) How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Clim Dyn 47:3043–3061. https://doi.org/10.1007/s00382-016-3012-z

    Article  Google Scholar 

  • Brotas L, Nicol F (2017) Architectural science review estimating overheating in European dwellings. Archit Sci Rev 603:180–191. https://doi.org/10.1080/00038628.2017.1300762

    Article  Google Scholar 

  • Chan ALS (2011) Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong. Energy Build 43:2860–2868. https://doi.org/10.1016/j.enbuild.2011.07.003

    Article  Google Scholar 

  • Chow DHC, Levermore GJ (2010) The effects of future climate change on heating and cooling demands in office buildings in the UK. Build Serv Eng Res Technol 31:307–323

    Article  Google Scholar 

  • CIBSE (2002) CIBSE guide J: weather, solar and illuminance data. Chart Inst Build Serv Eng 455

    Google Scholar 

  • CIBSE (2005) TM36: climate change and the indoor environment: impacts and adaptation. Charted Inst Build Serv Eng

    Google Scholar 

  • CIBSE (2009) Use of climate change scenarios for building simulation: the CIBSE future weather years Use of climate change scenarios for building simulation: the CIBSE future weather years

    Google Scholar 

  • CIBSE (2014) Design summer years for London TM49

    Google Scholar 

  • Communities & Local Government (2008) National Calculation Methodology (NCM) modelling guide (for buildings other than dwellings in England and Wales). Communities local government, pp 1–34

    Google Scholar 

  • Crawley D (1998) Which weather data should you use for energy simulations of commercial buildings? Am Soc Heat Refrig Air-Cond 1–18

    Google Scholar 

  • Crawley DB (2008) Estimating the impacts of climate change and urbanization on building performance. J Build Perform Simul 1:91–115. https://doi.org/10.1080/19401490802182079

    Article  Google Scholar 

  • Deutscher Wetterdienst (2017) Handbuch Ortsgenaue Testreferenzjahre von zukünftige Witterungsverhältnisse 45

    Google Scholar 

  • Didier J, Alfred P (2002) The development of typical weather years for international locations: part I, algorithms

    Google Scholar 

  • Eames M, Kershaw T, Coley D (2011) On the creation of future probabilistic design weather years from UKCP09. Build Serv Eng Res Technol 32:127–142. https://doi.org/10.1177/0143624410379934

    Article  Google Scholar 

  • Eames ME, Ramallo-Gonzalez AP, Wood MJ (2015) An update of the UK’s test reference year: the implications of a revised climate on building design. Build Serv Eng Res Technol 37:316–333. https://doi.org/10.1177/0143624415605626

    Article  Google Scholar 

  • EnergyPlus (2016) EnergyPlusTM Version 8.7 documentation: auxiliary programs

    Google Scholar 

  • European Commission (EC) (1985) Test Reference Years TRY, Weather data sets for computer simulations of solar energy systems and energy consumption in buildings. Brussels, Belgium

    Google Scholar 

  • Farrou I, Kolokotroni M, Santamouris M (2014) Building envelope design for climate change mitigation: a case study of hotels in Greece. Int J Sustain Energy 1–24. https://doi.org/10.1080/14786451.2014.966711

    Article  Google Scholar 

  • Ferrari D, Lee T (2008) Beyond Tmy: climate data for specific applications. Sol Energy 1–12

    Google Scholar 

  • Finkelstein JM, Schafer RE (1971) Improved goodness-of-fit tests. Biometrika 58:641–645. https://doi.org/10.1093/biomet/58.3.641

    Article  MATH  Google Scholar 

  • Hazeleger W, Severijns C, Semmler T, Ştefǎnescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, Van Den Hurk B, Jimenez P, Jones C, Kållberg P, Koenigk T, McGrath R, Miranda P, Van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) EC-Earth: a seamless Earth-system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363. https://doi.org/10.1175/2010BAMS2877.1

    Article  Google Scholar 

  • Herrera M, Natarajan S, Coley DA, Kershaw T, Ramallo-González AP, Eames M, Fosas D, Wood M (2017) A review of current and future weather data for building simulation. Build Serv Eng Res Technol. https://doi.org/10.1177/0143624417705937

    Article  Google Scholar 

  • Holmes MJ, Hacker JN (2007) Climate change, thermal comfort and energy: meeting the design challenges of the 21st century. Energy Build 39:802–814. https://doi.org/10.1016/j.enbuild.2007.02.009

    Article  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75. https://doi.org/10.1007/s004840050118

    Article  Google Scholar 

  • Huang YJ, Su F, Seo D, Krarti M (2014) Development of 3012 IWEC2 weather files for international locations (RP-1477). ASHRAE Trans 120:340–355

    Google Scholar 

  • Hutchinson MF (1987) Methods of generation of weather sequences. In: Bunting AH (ed) Agricultural environments: characterization, classification and mapping. CAB International, Wallingford, UK

    Google Scholar 

  • International Organization for Standardization (2005) 15927-4 hygrothermal performance of buildings—calculation and presentation of climatic data—part 4: hourly data for assessing the annual energy use for heating and cooling, Geneva

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. CUP, Cambridge, United Kingdom and New York, USA

    Google Scholar 

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. https://doi.org/10.1007/s10113-013-0499-2

    Article  Google Scholar 

  • Jentsch MF, Bahaj AS, James PAB (2008) Climate change future proofing of buildings-generation and assessment of building simulation weather files. Energy Build 40:2148–2168. https://doi.org/10.1016/j.enbuild.2008.06.005

    Article  Google Scholar 

  • Jentsch MF, James PAB, Bourikas L, Bahaj AS (2013) Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renew Energy 55:514–524. https://doi.org/10.1016/j.renene.2012.12.049

    Article  Google Scholar 

  • Jones P, Harpham C, Kilsby C, Glenis V, Burton A (2010) UK climate projections science report: projections of future daily climate for the UK from the weather generator

    Google Scholar 

  • Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Evans JP, Fosser G, Wilkinson JM (2017) Do convection-permitting regional climate models improve projections of future precipitation change? Bull Am Meteorol Soc 98:79–93. https://doi.org/10.1175/BAMS-D-15-0004.1

    Article  Google Scholar 

  • Kershaw T, Eames M, Coley D (2010) Comparison of multi-year and reference year building simulations. Build Serv Eng Res Technol 31:357–369. https://doi.org/10.1177/0143624410374689

    Article  Google Scholar 

  • Kershaw T, Eames M, Coley D (2011) Assessing the risk of climate change for buildings: a comparison between multi-year and probabilistic reference year simulations. Build Env 46:1303–1308. https://doi.org/10.1016/j.buildenv.2010.12.018

    Article  Google Scholar 

  • Kikumoto H, Ooka R, Arima Y, Yamanaka T (2015) Study on the future weather data considering the global and local climate change for building energy simulation. Sustain Cities Soc 14:404–413. https://doi.org/10.1016/j.scs.2014.08.007

    Article  Google Scholar 

  • Kolokotroni M, Ren X, Davies M, Mavrogianni A (2012) London’s urban heat island: impact on current and future energy consumption in office buildings. Energy Build 47:302–311. https://doi.org/10.1016/j.enbuild.2011.12.019

    Article  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. In: Barros VR, Field CB, Dokken D, Mastrandrea M, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White L (eds) Climate change 2014: impacts, adaptation and vulnerability—contributions of the working group II to the fifth assessment report, pp 1267–1326. Cambridge University Press, Cambridge, United Kingdom and New York, USA

    Google Scholar 

  • Lee K, Yoo H, Levermore GJ (2010) Generation of typical weather data using the ISO Test Reference Year (TRY) method for major cities of South Korea. Build Env 45:956–963. https://doi.org/10.1016/j.buildenv.2009.10.002

    Article  Google Scholar 

  • Levermore GJ, Doylend NO (2002) North American and European hourly based weather data and methods for HVAC building energy analyses and design by simulation. ASHRAE Trans 108:1053–1062

    Google Scholar 

  • Levermore G, Courtney R, Watkins R, Cheung HKW, Parkinson JB, Laycock P, Natarajan S, Nikolopoulou M, McGilligan C, Muneer T, Tham Y, Underwood CP, Edge JS, Du H, Sharples S, Kang J, Barclay M, Sanderson M (2014) Deriving and using future weather data for building design from UK climate change projections—an overview of the COPSE project, pp 1–7

    Google Scholar 

  • Liu C, Kershaw T, Eames ME, Coley DA (2016) Future probabilistic hot summer years for overheating risk assessments. Build Env 105:56–68. https://doi.org/10.1016/j.buildenv.2016.05.028

    Article  Google Scholar 

  • Marion W, Urban K (1995) User’s manual for TMY2s: derived from the 1961–1990 national solar radiation data base

    Google Scholar 

  • MBE KTN (2013) Guidance for making the case for climate change adaptation in the built environment

    Google Scholar 

  • Meteotest: Remund J, Müller S, Kunz S, Huguenin-Landl B, Studer C, Cattin R (2017) Meteonorm handbook part I: software, global meteorological database version 7 software and data for engineers, planers and education. http://www.meteonorm.com

  • Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer R, van Vuuren D, Weyant J, Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts and response strategies

    Google Scholar 

  • Narowski P, Janicki M, Heim D (2013) Comparison of untypical meteorological years (umy) and their influence on building energy performance simulations. In: Proceedings of BS 2013: 13th conference of the international building performance simulation association, pp 1414–1421

    Google Scholar 

  • National Climate Data Center, U.S. Department of Commerce (1976) Test Reference Year. Tape Ref Man TD-9706

    Google Scholar 

  • Nik VM (2016) Making energy simulation easier for future climate—synthesizing typical and extreme weather data sets out of regional climate models (RCMs). Appl Energy 177:204–226. https://doi.org/10.1016/j.apenergy.2016.05.107

    Article  Google Scholar 

  • Nik VM (2017) Application of typical and extreme weather data sets in the hygrothermal simulation of building components for future climate—a case study for a wooden frame wall. Energy Build 154:30–45. https://doi.org/10.1016/j.enbuild.2017.08.042

    Article  Google Scholar 

  • Nik VM, Sasic Kalagasidis A (2013) Impact study of the climate change on the energy performance of the building stock in Stockholm considering four climate uncertainties. Build Env 60:291–304. https://doi.org/10.1016/j.buildenv.2012.11.005

    Article  Google Scholar 

  • Nik VM, Coccolo S, Kämpf J, Scartezzini JL (2017) Investigating the importance of future climate typology on estimating the energy performance of buildings in the EPFL campus. Energy Procedia 122:1088–1093. https://doi.org/10.1016/j.egypro.2017.07.434

    Article  Google Scholar 

  • Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, Van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53:323–361. https://doi.org/10.1002/2014RG000475

    Article  Google Scholar 

  • Ramon D, Wouters H, Van Lipzig N, Allacker K (2017) Comparison of high-resolution climate model data with a Test Reference Year for building simulations. In: Brotas L, Roaf S, Nicol JF (eds) Proceedings of 33rd PLEA international conference, pp 1865–1872. NCEUB 2017

    Google Scholar 

  • RICS (2015) Climatic risk toolkit. The impact of climate change in the non-domestic real estate sector of eight European countries

    Google Scholar 

  • Roetzel A, Tsangrassoulis A (2012) Impact of climate change on comfort and energy performance in offices. Build Env 57:349–361. https://doi.org/10.1016/j.buildenv.2012.06.002

    Article  Google Scholar 

  • Shen P (2017) Impacts of climate change on U.S. building energy use by using downscaled hourly future weather data. Energy Build 134:61–70. https://doi.org/10.1016/j.enbuild.2016.09.028

    Article  Google Scholar 

  • Shibuya T, Croxford B (2016) The effect of climate change on office building energy consumption in Japan. Energy Build 117. https://doi.org/10.1016/j.enbuild.2016.02.023

    Article  Google Scholar 

  • Stoffel TL, Rymes MD (1998) Production of the weather year for energy calculations version 2 (WYEC2) data files. ASHRAE Trans 487–497

    Google Scholar 

  • Struck C, de Wilde P, Evers J, Hensen JLM, Plokker W (2009) On selecting weather data sets to estimate a building design’s robustness to climate variations. In: Proceedings of the 11th IBPSA building simulation conference, pp 513–520

    Google Scholar 

  • Thevenard DJ, Brunger AP (2002) The development of Typical Weather Years for international locations: part II, production. ASHRAE Trans 480–486

    Google Scholar 

  • Van Paassen AHC, Luo QX (2002) Weather data generator to study climate change on buildings. Build Serv Eng Res Technol 23:251–258. https://doi.org/10.1191/0143624402bt048oa

    Article  Google Scholar 

  • Vanden Broucke S, Wouters H, Demuzere M, van Lipzig NPM (2017) Added value of convection-permitting scale in simulating future change in extreme precipitation (Under review)

    Google Scholar 

  • Vandentorren S, Bretin P, Zeghnoun A, Mandereau-Bruno L, Croisier A, Cochet C, Ribéron J, Siberan I, Declercq B, Ledrans M (2006) August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur J Public Health 16:583–591. https://doi.org/10.1093/eurpub/ckl063

    Article  Google Scholar 

  • Watkins R, Levermore GJ, Parkinson JB (2013) The design reference year—a new approach to testing a building in more extreme weather using UKCP09 projections. Build Serv Eng Res Technol 34:165–176. https://doi.org/10.1177/0143624411431170

    Article  Google Scholar 

  • Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geog 21:530–548. https://doi.org/10.1177/030913339702100403

    Article  Google Scholar 

  • Wilcox S, Marion W (2008) Users manual for TMY3. Renew Energy. doi:NREL/TP-581-43156

    Google Scholar 

  • de Wilde P, Tian W (2010) Predicting the performance of an office under climate change: a study of metrics, sensitivity and zonal resolution. Energy Build 42:1674–1684. https://doi.org/10.1016/j.enbuild.2010.04.011

    Article  Google Scholar 

  • Wilks DS, Wilby RL (1999) The weather generation game: a review of stochastic weather models. Prog Phys Geogr 23:329–357. https://doi.org/10.1191/030913399666525256

    Article  Google Scholar 

  • Wouters H, De Ridder K, Demuzere M, Lauwaet D, Van Lipzig NPM (2013) The diurnal evolution of the urban heat island of Paris: a model-based case study during Summer 2006. Atmos Chem Phys 13:8525–8541. https://doi.org/10.5194/acp-13-8525-2013

    Article  Google Scholar 

  • Wouters H, De Ridder K, Poelmans L (2016) Heat stress increase towards the mid-21st century twice as large for cities compared to rural areas

    Google Scholar 

  • Wouters H, Demuzere M, Blahak U, Fortuniak K, Maiheu B, Camps J, Tielemans D, Van Lipzig NPM (2016) The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: description and application with the COSMO-CLM model for a Belgian summer. Geosci Model Dev 9:3027–3054. https://doi.org/10.5194/gmd-9-3027-2016

    Article  Google Scholar 

  • Wouters H, De Ridder K, Poelmans L, Willems P, Brouwers J, Hosseinzadehtalaei P, Tabari H, Broucke SV, van Lipzig NPM, Demuzere M (2017) Heat stress increase under climate change twice as large in cities as in rural areas: a study for a densely populated midlatitude maritime region. Geophys Res Lett 44:1–11. https://doi.org/10.1002/2017gl074889

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is part of an SBO Ph.D. fellowship ‘Towards future-proof buildings in Flanders: Climate and Life Cycle modelling for resilient office buildings’ (1S97418 N) funded by Research Foundation Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Ramon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramon, D., Allacker, K., van Lipzig, N.P.M., De Troyer, F., Wouters, H. (2019). Future Weather Data for Dynamic Building Energy Simulations: Overview of Available Data and Presentation of Newly Derived Data for Belgium. In: Motoasca, E., Agarwal, A., Breesch, H. (eds) Energy Sustainability in Built and Urban Environments. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3284-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3284-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3283-8

  • Online ISBN: 978-981-13-3284-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics