Skip to main content

Promises and Challenges of Growing Microalgae in Wastewater

  • Chapter
  • First Online:
Water Conservation, Recycling and Reuse: Issues and Challenges

Abstract

Microalgae have been theoretically described as a sustainable feedstock for biofuel production. However, there are still some concerns and obstacles that need to be overcome in order to translate the theoretical promise into commercial and economic success. These obstacles include a high requirement for nutrients and sustainable water source and the identification of affordable cultivation conditions. It has been suggested that growing microalgae in wastewater can potentially offset some of these obstacles. Microalgae can perform a dual role for remediation of nutrient pollutants and biomass production when grown in wastewater. However, there are huge challenges to overcome before this route can be exploited in an economically and environmentally sustainable manner. In the present chapter, the potentials and challenges of growing microalgae in wastewater and its future implications are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  CAS  Google Scholar 

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30(6):1344–1353

    Article  Google Scholar 

  • Ahmad AL, Mat YNH, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15(1):584–593

    Article  CAS  Google Scholar 

  • Ahmad A, Yasin NM, Derek C, Lim J (2012) Crossflow microfiltration of microalgae biomass for biofuel production. Desalination 302:65–70

    Article  CAS  Google Scholar 

  • Al-Jasser AO (2011) Saudi wastewater reuse standards for agricultural irrigation: Riyadh treatment plants effluent compliance. J King Saud Univ Eng Sci 23(1):1–8

    Article  Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88(10):3402–3410

    Article  CAS  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50(7):1834–1840

    Article  CAS  Google Scholar 

  • An JY, Sim SJ, Lee JS, Kim BW (2003a) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    Article  CAS  Google Scholar 

  • An JY, Sim SJ, Lee JS, Kim BW (2003b) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    Article  CAS  Google Scholar 

  • Ansari FA, Shriwastav A, Gupta SK, Rawat I, Guldhe A, Bux F (2015) Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery. Bioresour Technol 179:559–564

    Article  CAS  Google Scholar 

  • Ansari FA, Shekh AY, Gupta SK, Bux F (2017a) Microalgae for biofuels: applications, process constraints and future needs. In: Algal Biofuels. Springer, Cham, pp 57–76

    Chapter  Google Scholar 

  • Ansari FA, Wahal S, Gupta SK, Rawat I, Bux F (2017b) A comparative study on biochemical methane potential of algal substrates: implications of biomass pre-treatment and product extraction. Bioresour Technol 234:320–326

    Article  CAS  Google Scholar 

  • Aresta M, Dibenedetto A et al (2005) Production of biodiesel from macroalgae by supercritical CO 2 extraction and thermochemical liquefaction. Environ Chem Lett 3(3):136–139

    Article  CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Badawy MI, Wahaab RA, El-Kalliny Fenton AS (2009) Biological treatment processes for the removal of some pharmaceuticals from industrial wastewater. J Hazard Mater 167(1–3):567–574

    Article  CAS  Google Scholar 

  • Bajhaiya AK, Mandotra SK, Suseela MR, Toppo K, Ranade S (2010) Algal biodiesel: the next generation biofuel for India. Asian J Exp Biol Sci 1(4):728–739

    CAS  Google Scholar 

  • Bajhaiya AK, Suseela MR, Ramteke PW (2012) Approaches and prospectives for algal fuel. In: The science of algal fuels. Springer, Dordrecht, pp 43–62

    Chapter  Google Scholar 

  • Balasubramani R, Gupta SK, Cho W, Kim J, Lee S, Jeong K, Lee D, Choi H (2016) Microalgae potential and multiple roles-current progress and future prospects-an overview. Sustainability 8(12):1215

    Article  CAS  Google Scholar 

  • Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Process Biochem 35:951–969

    Article  CAS  Google Scholar 

  • Bertoldi FC, Sant’Anna E, Da Costa Braga MV, Oliveira JLB (2006) Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater. Grasasy Aceites 57(3):270–274

    Google Scholar 

  • Bich NN, Yaziz MI, Bakti NAK (1999) Combination of Chlorella vulgaris and Eichhornia crassipes for wastewater nitrogen removal. Water Res 33(10):2357–2362

    Article  CAS  Google Scholar 

  • Booth E (1966) Some properties of seaweed manures. In: Proceedings of 5th international seaweed symposium. Pergamon Press, London, pp 349–357

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  CAS  Google Scholar 

  • Chabukdhara M, Gupta SK, Gogoi M (2017) Phycoremediation of heavy metals coupled with generation of bioenergy. In: Algal biofuels. Springer International Publishing, Cham, pp 163–188

    Chapter  Google Scholar 

  • Chan YJ, Mei FC, Chung LL, Hassell DG (2009) A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J 155(1–2):1–18

    Article  CAS  Google Scholar 

  • Chapman VJ, Chapman DJ (1980) Seaweeds and their uses. Chapman & Hall, London, pp 30–42

    Book  Google Scholar 

  • Chen H, Zhang C, Han J, Yu Y, Zhang P (2012) PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments. Environ Pollut 170:26–31

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352

    Article  CAS  Google Scholar 

  • Chiu S, Kao C, Tsai M, Ong S, Chen C, Lin C (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  CAS  Google Scholar 

  • Cho S, Luong TT, Lee D, Oh Y-K, Lee T (2011) Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol 102(18):8639–8645

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  Google Scholar 

  • Davis RD, Hall JE (1997) Production, treatment and disposal of wastewater sludge in Europe from a UK perspective. Eur Water Pollut Control 7(2):9–17

    Google Scholar 

  • de Godos VVA, Blanco S, González MCG, Soto R, García-Encina PA, Becares E, Muñoz R (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101:5150–5158

    Article  CAS  Google Scholar 

  • De-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  Google Scholar 

  • De-Bashan LE, Moreno M, Hernandez JP, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36(12):2941–2948

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Potential resources of non-edible oils for Biodiesel. Energy Sources Part B Econ Plann Policy 4(3):310–314

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749

    Article  CAS  Google Scholar 

  • Doornbosch R, Steenblik R (2007). Biofuels: is the cure worse than the disease? Paris, France, September 11–12

    Google Scholar 

  • Fitzgerald C, Gallagher E, Tasdemir D, Hayes M (2011) Heart health peptides from macroalgae: isolation and potential use in functional foods. J Agric Food Chem 59:6829–6836

    Article  CAS  Google Scholar 

  • González LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60(3):259–262

    Article  Google Scholar 

  • Gupta SK, Kumar M, Guldhe A, Ansari FA, Rawat I, Kanney K, Bux F (2014) Design and development of polyamine polymer for harvesting microalgae for biofuels production. Energy Convers Manag 85:537–544

    Article  CAS  Google Scholar 

  • Gupta SK, Shriwastav A, Kumari S, Ansari FA, Malik A, Bux F (2015) Phycoremediation of emerging contaminants. In: Algae and environmental sustainability. Springer, New Delhi, pp 129–146

    Chapter  Google Scholar 

  • Gupta SK, Ansari FA, Shriwastav A, Sahoo NK, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Clean Prod 115:255–264

    Article  CAS  Google Scholar 

  • Gupta SK, Sriwastav A, Ansari FA, Nasr M, Nema AK (2017a) Phycoremediation: an eco-friendly algal technology for bioremediation and bioenergy production. In: Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 431–456

    Chapter  Google Scholar 

  • Gupta SK, Ansari FA, Bauddh K, Singh B, Nema AK, Pant KK (2017b) Harvesting of microalgae for biofuels: comprehensive performance evaluation of natural, inorganic, and synthetic flocculants. In: Green technologies and environmental sustainability. Springer International Publishing, pp 131–156

    Google Scholar 

  • Gupta SK, Ansari FA, Nasr M, Rawat I, Nayunigari MK, Bux F (2017c) Cultivation of Chlorella sorokiniana and Scenedesmus obliquus in wastewater: fuzzy intelligence for evaluation of growth parameters and metabolites extraction. J Clean Prod 147:419–430

    Article  CAS  Google Scholar 

  • Harmelen T, Oonk H (2006) Microalgae biofixation processes. Application and potential contributions to greenhouse gas mitigation options. TNO Built Environment and Geosciences http://www.fluxfarm.com/uploads/3/1/6/8/3168871/biofixation.pdf. Accessed on 31 July 2012

  • Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S (2008) Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycol Res 112(1):70–81

    Article  CAS  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34:757–763

    Article  CAS  Google Scholar 

  • Ip SY, Bridger JS, Chin CT, Martin WRB, Raper WGC (1982) Algal growth in primary settled sewage – the effects of five key variables. Water Res 16:621–632

    Article  CAS  Google Scholar 

  • Johnson MB, Wen ZY (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  Google Scholar 

  • Kagami M, Bruin AD, Ibelings B, Donk EV (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Khan SA, Rashmi HMZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13(9):2361–2372

    Article  CAS  Google Scholar 

  • Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol 102(10):5800–5807

    Article  CAS  Google Scholar 

  • Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J (2007) Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour Technol 98:2220–2228

    Article  CAS  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18

    Article  CAS  Google Scholar 

  • Konig A, Pearson HW, Silva SA (1987) Ammonia toxicity to algal growth in waste stabilization ponds. Water Sci Technol 19:115–122

    Article  CAS  Google Scholar 

  • Kovacevic V, Wesseler J (2010) Cost-effectiveness analysis of algae energy production in the EU. Energy Policy 38(10):5749–5757

    Article  Google Scholar 

  • Kumar M, Sharma MK, Kumar A (2005) Spirulina fusiformis: a food supplement against mercury induced hepatic toxicity. J Health Sci 51:424–430

    Article  CAS  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Langenhove HV (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  CAS  Google Scholar 

  • Lavoie A, de la Noue J (1985) Hyperconcentrated cultures of Scenedesmus obliquus. A new approach for wastewater biological tertiary treatment. Water Res 19:1437–1442

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Lanca BM, Zhu J, Ruan R (2011) Characterization of a microalga chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    Article  CAS  Google Scholar 

  • Lohrey C, Kochergin V (2012) Biodiesel production from microalgae: co-location with sugar mills. Bioresour Technol 108:76–82

    Article  CAS  Google Scholar 

  • Louime C, Marshall RW, Vasanthaiah HKN, Onokpise O (2012) Genomics and potential bioenergy applications in the developing world. Genomics Appl Dev World 6:263–272

    Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010). A realistic technology and engineering assessment of algae biofuel production. Ener Biosci Inst Berkeley California: 1–178

    Google Scholar 

  • Martinez ME, Sanchez S, Jimenez JM, Yousfi FE, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • McGriff CE Jr, McKinney RE (1972) The removal of nutrients and organics by activated algae. Water Res 6(10):1155–1164

    Article  CAS  Google Scholar 

  • Melo JJD, Câmara AS (1994) Models for the optimization of regional wastewater treatment systems. Eur J Oper Res 73(1):1–16

    Article  Google Scholar 

  • Metcalf, Eddy I (1991) Wastewater engineering: treatment, disposal, and reuse, 4th edn. McGraw-Hill, Inc, New York

    Google Scholar 

  • Mohamed M, Ahmed T, El-Gohary F (2011) Use of down-flow hanging sponge (DHS) reactor as a promising post-treatment system for municipal wastewater. Chem Eng J 168(2):535–543

    Article  CAS  Google Scholar 

  • Molina GE, Belarbi EH, Fernández FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. J Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99(10):3949–3964

    Article  CAS  Google Scholar 

  • Olguin EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30(5):1031–1046

    Article  CAS  Google Scholar 

  • Orpez R, Martinez ME, Hodaifa G, El Yousfi F, Jbari N, Sanchez S (2009) Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246:625–630

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) Micro-algae and wastewater treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York, pp 305–328

    Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sewage Ind Wastes 29:437–457

    Google Scholar 

  • Oswald WJ, Golueke CG, Gee HK (1959) Wastewater reclamation through production of algae. Contribution 22, Water Resources Center, University of California, Berkley

    Google Scholar 

  • Park BK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  CAS  Google Scholar 

  • Rawat I, Gupta SK, Shriwastav A, Singh P, Kumari S, Bux F (2016) Microalgae applications in wastewater treatment. In: Algae biotechnology. Springer, Cham, pp 249–268

    Chapter  Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88(10):3507–3514

    Article  CAS  Google Scholar 

  • Riaño B, Molinuevo B, MC G-G (2011) Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresour Technol 102(23):10829–10833

    Article  CAS  Google Scholar 

  • Riley H (2002) Effects of algal fibre and perlite on physical properties of various soils and on potato nutrition and quality on a gravelly loam soil in southern Norway. Acta Agric Scandin B – Plant Soil Sci 52:86–95

    CAS  Google Scholar 

  • Robins JG (2010) Cool-season grasses produce more total biomass across the growing season than do warm-season grasses when managed with an applied irrigation gradient. Biomass Bioenergy 34(4):500–505

    Article  Google Scholar 

  • Rösch C, Skarka J, Patyk A (2009) Microalgae – opportunities and challenges of an innovative energy source. In: 17th European biomass conference and exhibition, Hamburg, Germany; June 29–July 3

    Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  CAS  Google Scholar 

  • Sahoo NK, Gupta SK, Rawat I, Ansari FA, Singh P, Naik SN, Bux F (2017) Sustainable dewatering and drying of self-flocculating microalgae and study of cake properties. J Clean Prod 159:248–256

    Article  CAS  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Shiklomanov IA (1999) World water resources: modern assessment and outlook for the 21st century, (Summary of world water resources at the beginning of the 21st century, prepared in the framework of the IHP UNESCO). Federal Service of Russia for Hydrometeorology & Environment Monitoring, State Hydrological Institute, St. Petersburg

    Google Scholar 

  • Shriwastav A, Gupta SK, Ansari FA, Rawat I, Bux F (2014) Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading. Bioresour Technol 174:60–66

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Sonune A, Ghate R (2004) Developments in wastewater treatment methods. Desalination 167:55–63

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26(5):424–435

    Article  CAS  Google Scholar 

  • Sukenik A, Shelaf G (1984) Algal autoflocculation-verification and proposed mechanism. Biotechnol Bioeng 26:142

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella and Scenedesmus sp. Environ Pollut 58:19–34

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    Article  CAS  Google Scholar 

  • Travieso L, Benitez F, Dupeiron R (1992) Sewage treatment using immobilized microalgae. Bioresour Technol 40:183–187

    Article  CAS  Google Scholar 

  • U.S. DOE (2010) National algal biofuels technology roadmap. Report no.: DOE/EE-0332, U.S. Department of Energy, Office of Energy Efficiency and Renew Energy, Biomass Program

    Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sust Energ 2:012701

    Article  CAS  Google Scholar 

  • Wang LA, Min M, Li YC, Chen P, Chen YF, Liu YH (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    Article  CAS  Google Scholar 

  • Wei Y, Van Houten RT, Borger AR, Eikelboom DH, Fan Y (2003) Minimization of excess sludge production for biological wastewater treatment. Water Res 37(18):4453–4467

    Article  CAS  Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11(4):781–812

    Article  CAS  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122

    Article  CAS  Google Scholar 

  • Wrigley TJ, Toerien DF (1990) Limnological aspects of small sewage ponds. Water Res 24:83–90

    Article  CAS  Google Scholar 

  • Wu LF, Chen PC, Huang AP, Lee CM (2012) The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol 113:14–18

    Article  CAS  Google Scholar 

  • Yamaguchi K (1997) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J Appl Phycol 8:487–502

    Article  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165

    Article  CAS  Google Scholar 

  • Zhang ED, Wang B, Wang QH, Zhang SB, Zhao BD (2008) Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99:3787–3793

    Article  CAS  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol 102(13):6909–6919

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Olumayowa Osundeko is grateful to the Sustainable Consumption Institute Doctoral Training Centre for providing a graduate studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Bajhaiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osundeko, O., Ansolia, P., Gupta, S.K., Bag, P., Bajhaiya, A.K. (2019). Promises and Challenges of Growing Microalgae in Wastewater. In: Singh, R., Kolok, A., Bartelt-Hunt, S. (eds) Water Conservation, Recycling and Reuse: Issues and Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-3179-4_2

Download citation

Publish with us

Policies and ethics