Skip to main content

Prediction of Peroxisomal Matrix Proteins in Plants

  • Chapter
  • First Online:
Proteomics of Peroxisomes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 89))

Abstract

Our knowledge of the proteome of plant peroxisomes is far from being complete, and the functional complexity and plasticity of this cell organelle are amazingly high particularly in plants, as exemplified by the model species Arabidopsis thaliana. Plant-specific peroxisome functions that have been uncovered only recently include, for instance, the participation of peroxisomes in phylloquinone and biotin biosynthesis. Experimental proteome studies have been proved very successful in defining the proteome of Arabidopsis peroxisomes but this approach also faces significant challenges and limitations. Complementary to experimental approaches, computational methods have emerged as important powerful tools to define the proteome of soluble matrix proteins of plant peroxisomes. Compared to other cell organelles such as mitochondria, plastids and the ER, the simultaneous operation of two major import pathways for soluble proteins in peroxisomes is rather atypical. Novel machine learning prediction approaches have been developed for peroxisome targeting signals type 1 (PTS1) and revealed high sensitivity and specificity, as validated by in vivo subcellular targeting analyses in diverse transient plant expression systems. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In contrast, the prediction of PTS2 proteins largely remains restricted to genome searches by conserved patterns contrary to more advanced machine learning methods. Here, we summarize and discuss the capabilities and accuracies of available prediction algorithms for PTS1 and PTS2 carrying proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CML:

Calmodulin-like protein

EYFP:

Enhanced yellow fluorescent protein

PEX:

Peroxin

PTS1/2:

Peroxisomal targeting signal type 1/2

TPR:

Tetratricopeptide (34-amino acid) repeat

PWM:

Position weight matrix

References

  • Baker A, Paudyal R (2014) The life of the peroxisome: from birth to death. Curr Opin Plant Biol 22:39–47. https://doi.org/10.1016/j.pbi.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  • Boden M, Hawkins J (2005) Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics 21(10):2279–2286

    Article  CAS  PubMed  Google Scholar 

  • Bodén M, Hawkins JC (2006) Evolving discriminative motifs for recognizing proteins imported to the peroxisome via the PTS2 pathway. https://doi.org/10.1109/cec.2006.1688653

  • Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763(12):1565–1573

    Article  CAS  PubMed  Google Scholar 

  • Chowdhary G, Kataya AR, Lingner T, Reumann S (2012) Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis. BMC Plant Biol 12(1):142. https://doi.org/10.1186/1471-2229-12-142 (doi:1471-2229-12-142 [pii])

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Dodt G, Warren D, Becker E, Rehling P, Gould SJ (2001) Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p. J Biol Chem 276(45):41769–41781. https://doi.org/10.1074/jbc.M106932200 (M106932200 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Dolze E, Chigri F, Howing T, Hierl G, Isono E, Vothknecht UC, Gietl C (2013) Calmodulin-like protein AtCML3 mediates dimerization of peroxisomal processing protease AtDEG15 and contributes to normal peroxisome metabolism. Plant Mol Biol 83(6):607–624. https://doi.org/10.1007/s11103-013-0112-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Effelsberg D, Cruz-Zaragoza LD, Schliebs W, Erdmann R (2016) Pex9p is a new yeast peroxisomal import receptor for PTS1-containing proteins. J Cell Sci 129(21):4057–4066. https://doi.org/10.1242/jcs.195271

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Elofsson A, von Heijne G, Cristobal S (2003) In silico prediction of the peroxisomal proteome in fungi, plants and animals. J Mol Biol 330(2):443–456

    Article  CAS  PubMed  Google Scholar 

  • Fodor K, Wolf J, Erdmann R, Schliebs W, Wilmanns M (2012) Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol 10(4):e1001309. https://doi.org/10.1371/journal.pbio.1001309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gatto GJ Jr, Geisbrecht BV, Gould SJ, Berg JM (2000) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 7(12):1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Gatto GJ Jr, Maynard EL, Guerrerio AL, Geisbrecht BV, Gould SJ, Berg JM (2003) Correlating structure and affinity for PEX5: PTS1 complexes. Biochemistry 42(6):1660–1666

    Article  CAS  PubMed  Google Scholar 

  • Gould SG, Keller GA, Subramani S (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105(6 Pt 2):2923–2931

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108(5):1657–1664

    Article  CAS  PubMed  Google Scholar 

  • Hawkins J, Mahony D, Maetschke S, Wakabayashi M, Teasdale RD, Boden M (2007) Identifying novel peroxisomal proteins. Proteins 69(3):606–616

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Aoki M, Kondo M, Nishimura M (1997) Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide. Plant Cell Physiol 38(6):759–768

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Yagi M, Nito K, Kamada T, Nishimura M (2005) Differential contribution of two peroxisomal protein receptors to the maintenance of peroxisomal functions in Arabidopsis. J Biol Chem 280(15):14829–14835

    Article  CAS  PubMed  Google Scholar 

  • Helm M, Luck C, Prestele J, Hierl G, Huesgen PF, Frohlich T, Arnold GJ, Adamska I, Gorg A, Lottspeich F, Gietl C (2007) Dual specificities of the glyoxysomal/peroxisomal processing protease Deg15 in higher plants. Proc Natl Acad Sci U S A 104(27):11501–11506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35 (Web Server issue): W585–587. https://doi.org/10.1093/nar/gkm259

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24(6):2279–2303. https://doi.org/10.1105/tpc.112.096586 (doi:tpc.112.096586 [pii])

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kataya AR, Heidari B, Lillo C (2015a) Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time–joint functions among B’eta subfamily members. Plant Signal Behav 10(5):e1026024. https://doi.org/10.1080/15592324.2015.1026024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kataya AR, Reumann S (2010) Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. Plant Signal Behav 5(2):171–175 (doi:10527 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataya AR, Schei E, Lillo C (2015b) MAP kinase phosphatase 1 harbors a novel PTS1 and is targeted to peroxisomes following stress treatments. J Plant Physiol 179:12–20. https://doi.org/10.1016/j.jplph.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  • Kataya AR, Schei E, Lillo C (2016) Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana. Planta 243(3):699–717. https://doi.org/10.1007/s00425-015-2439-5

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Hayashi M, Kondo M, Nishimura M (1996) Targeting and processing of a chimeric protein with the N-terminal presequence of the precursor to glyoxysomal citrate synthase. Plant Cell 8(9):1601–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato A, Takeda-Yoshikawa Y, Hayashi M, Kondo M, Hara-Nishimura I, Nishimura M (1998) Glyoxysomal malate dehydrogenase in pumpkin: cloning of a cDNA and functional analysis of its presequence. Plant Cell Physiol 39(2):186–195

    Article  CAS  PubMed  Google Scholar 

  • Khan BR, Zolman BK (2010) pex5 Mutants that differentially disrupt PTS1 and PTS2 peroxisomal matrix protein import in Arabidopsis. Plant Physiol 154(4):1602–1615. https://doi.org/10.1104/pp.110.162479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kragler F, Lametschwandtner G, Christmann J, Hartig A, Harada JJ (1998) Identification and analysis of the plant peroxisomal targeting signal 1 receptor NtPEX5. Proc Natl Acad Sci U S A 95(22):13336–13341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunze M, Berger J (2015) The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front Physiol 6:259. https://doi.org/10.3389/fphys.2015.00259

    Article  PubMed Central  PubMed  Google Scholar 

  • Kunze M, Neuberger G, Maurer-Stroh S, Ma J, Eck T, Braverman N, Schmid JA, Eisenhaber F, Berger J (2011) Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7. J Biol Chem 286(52):45048–45062. https://doi.org/10.1074/jbc.M111.301853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lametschwandtner G, Brocard C, Fransen M, Van Veldhoven P, Berger J, Hartig A (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem 273(50):33635–33643

    Article  CAS  PubMed  Google Scholar 

  • Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen X-Y, Siemsen T, Morgenstern B, Meinicke P, Reumann S (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23(4):1556–1572. https://doi.org/10.1105/tpc.111.084095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma C, Reumann S (2008) Improved prediction of peroxisomal PTS1 proteins from genome sequences based on experimental subcellular targeting analyses as exemplified for protein kinases from Arabidopsis. J Exp Bot 59(13):3767–3779. https://doi.org/10.1093/jxb/ern221 (doi:ern221 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Maynard EL, Berg JM (2007) Quantitative analysis of peroxisomal targeting signal type-1 binding to wild-type and pathogenic mutants of Pex5p supports an affinity threshold for peroxisomal protein targeting. J Mol Biol 368(5):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Maynard EL, Gatto GJ Jr, Berg JM (2004) Pex5p binding affinities for canonical and noncanonical PTS1 peptides. Proteins 55(4):856–861. https://doi.org/10.1002/prot.20112

    Article  CAS  PubMed  Google Scholar 

  • Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, Wagner R, Erdmann R (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12(3):273–277. https://doi.org/10.1038/ncb2027 (doi:ncb2027 [pii])

    Article  CAS  PubMed  Google Scholar 

  • Montilla-Martinez M, Beck S, Klumper J, Meinecke M, Schliebs W, Wagner R, Erdmann R (2015) Distinct pores for peroxisomal import of PTS1 and PTS2 proteins. Cell Rep 13(10):2126–2134. https://doi.org/10.1016/j.celrep.2015.11.016

    Article  CAS  PubMed  Google Scholar 

  • Mullen RT, Lee MS, Flynn CR, Trelease RN (1997) Diverse amino acid residues function within the type 1 peroxisomal targeting signal. Implications for the role of accessory residues upstream of the type 1 peroxisomal targeting signal. Plant Physiol 115(3):881–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14(4):897–911

    Article  CAS  PubMed  Google Scholar 

  • Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F (2003a) Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol 328(3):567–579

    Article  CAS  PubMed  Google Scholar 

  • Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F (2003b) Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 328(3):581–592

    Article  CAS  PubMed  Google Scholar 

  • Osumi T, Tsukamoto T, Hata S (1992) Signal peptide for peroxisomal targeting: replacement of an essential histidine residue by certain amino acids converts the amino-terminal presequence of peroxisomal 3-ketoacyl-CoA thiolase to a mitochondrial signal peptide. Biochem Biophys Res Commun 186(2):811–818

    Article  CAS  PubMed  Google Scholar 

  • Pan D, Nakatsu T, Kato H (2013) Crystal structure of peroxisomal targeting signal-2 bound to its receptor complex Pex7p-Pex21p. Nat Struct Mol Biol 20(8):987-993. https://doi.org/10.1038/nsmb.2618 (nsmb.2618 [pii])

    Article  CAS  Google Scholar 

  • Petriv OI, Tang L, Titorenko VI, Rachubinski RA (2004) A new definition for the consensus sequence of the peroxisome targeting signal type 2. J Mol Biol 341(1):119–134. https://doi.org/10.1016/j.jmb.2004.05.064

    Article  CAS  PubMed  Google Scholar 

  • Purdue PE, Yang X, Lazarow PB (1998) Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway. J Cell Biol 143(7):1859–1869

    Article  CAS  PubMed  Google Scholar 

  • Ramon NM, Bartel B (2010) Interdependence of the peroxisome-targeting receptors in Arabidopsis thaliana: PEX7 facilitates PEX5 accumulation and import of PTS1 cargo into peroxisomes. Mol Biol Cell 21(7):1263–1271. https://doi.org/10.1091/mbc.E09-08-0672 (doi:E09-08-0672 [pii])

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rayapuram N, Subramani S (2006) The importomer—a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix. Biochim Biophys Acta 1763(12):1613–1619

    Article  CAS  PubMed  Google Scholar 

  • Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135(2):783–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reumann S, Bartel B (2016) Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics. Curr Opin Plant Biol 34:17–26. https://doi.org/10.1016/j.pbi.2016.07.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reumann S, Buchwald D, Lingner T (2012) PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins. Front Plant Sci 3:194. https://doi.org/10.3389/fpls.2012.00194

    Article  PubMed Central  PubMed  Google Scholar 

  • Reumann S, Chowdhary G, Lingner T (2016) Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s). Biochim Biophys Acta 1863(5):790–803. https://doi.org/10.1016/j.bbamcr.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  • Schuhmann H, Huesgen PF, Gietl C, Adamska I (2008) The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis. Plant Physiol 148(4):1847–1856. https://doi.org/10.1104/pp.108.125377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skoulding NS, Chowdhary G, Deus MJ, Baker A, Reumann S, Warriner SL (2015) Experimental validation of plant peroxisomal targeting prediction algorithms by systematic comparison of in vivo import efficiency and in vitro PTS1 binding affinity. J Mol Biol 427(5):1085–1101. https://doi.org/10.1016/j.jmb.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  • Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 10(11):3255–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swinkels BW, Gould SJ, Subramani S (1992) Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal. FEBS Lett 305(2):133–136

    Article  CAS  PubMed  Google Scholar 

  • Theodoulou FL, Bernhardt K, Linka N, Baker A (2013) Peroxisome membrane proteins: multiple trafficking routes and multiple functions? Biochem J 451(3):345–352. https://doi.org/10.1042/BJ20130078

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang Y, Gao C, Jiang L, Guo D (2017) PPero, a computational model for plant PTS1 type peroxisomal protein prediction. PLoS ONE 12(1):e0168912. https://doi.org/10.1371/journal.pone.0168912

    Article  PubMed Central  PubMed  Google Scholar 

  • Wimmer C, Schmid M, Veenhuis M, Gietl C (1998) The plant PTS1 receptor: similarities and differences to its human and yeast counterparts. Plant J 16(4):453–464

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Mol Biol Cell 16(2):573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yifrach E, Chuartzman SG, Dahan N, Maskit S, Zada L, Weill U, Yofe I, Olender T, Schuldiner M, Zalckvar E (2016) Characterization of proteome dynamics during growth in oleate reveals a new peroxisome-targeting receptor. J Cell Sci 129(21):4067–4075. https://doi.org/10.1242/jcs.195255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrun Reumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reumann, S., Chowdhary, G. (2018). Prediction of Peroxisomal Matrix Proteins in Plants. In: del Río, L., Schrader, M. (eds) Proteomics of Peroxisomes. Subcellular Biochemistry, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-13-2233-4_5

Download citation

Publish with us

Policies and ethics