Skip to main content

Proteins and Exopolysaccharides of Lactic Acid Bacteria

  • Chapter
  • First Online:
Lactic Acid Bacteria in Foodborne Hazards Reduction

Abstract

Bacteriocin is peptide produced by bacteria to inhibit or kill other bacteria, exopolysaccharides are long chain polysaccharides composed of repeating sugar units. In the past decade, interest in bacteriocin and polysaccharides research from lactic acid bacteria have obtained great momentum due to their potential functions. This chapter will summarize current literature on the biological characteristics and functions of protein and exopolysaccharide produced by lactic acid bacteria, and discuss their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasiliasi, S., et al. 2011. Effect of medium composition and culture condition on the production of bacteriocin-like inhibitory substances (BLIS) by Lactobacillus Paracasei LA07, a strain isolated from Budu. Biotechnology & Biotechnological Equipment 25: 2652–2657.

    Article  CAS  Google Scholar 

  • Abriouel, H., R. Lucas, N.B. Omar, E. Valdivia, and A. Gálvez. 2010. Potential applications of the cyclic peptide Enterocin AS-48 in the preservation of vegetable foods and beverages. Probiotics Antimicrob Proteins. 2 (2): 77–89.

    Article  CAS  PubMed  Google Scholar 

  • Abriouel, H., C.M. Franz, O.N. Ben, and A. Gálvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews 35: 201.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, V., et al. 2017. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. International Journal of Antimicrobial Agents 49: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Ai, L.Z., et al. 2006. Optimization of culture conditions for exopolysaccharide production by Lactobacillus casei LC2W. Milchwissenschaft-Milk Science International 61: 374–377.

    CAS  Google Scholar 

  • Ai, L., et al. 2008a. Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W. Carbohydrate Polymers 74: 353–357.

    Article  CAS  Google Scholar 

  • Ai, L.Z., et al. 2008b. Isolation and antihypertensive effect of exopolysaccharides from Lactobacillus casei LC2W. Milchwissenschaft-Milk Science International 63: 3–6.

    CAS  Google Scholar 

  • Alanis, A.J. 2005. Resistance to antibiotics: Are we in the post-antibiotic era? Archives of Medical Research 36: 697.

    Article  PubMed  Google Scholar 

  • And, H.C., and D.G. Hoover. 2003. Bacteriocins and their food applications. Comprehensive Reviews in Food Science & Food Safety 2: 82–100.

    Article  Google Scholar 

  • Arauz, L.J.D., et al. 2012. Culture medium of diluted skimmed milk for the production of nisin in batch cultivations. Annals of Microbiology 62: 419–426.

    Article  CAS  Google Scholar 

  • Ariga, H., et al. 1992. Extracellular polysaccharide from encapsulated Streptococcus Salivarius subsp thermophilus OR-901 isolated from commercial yogurt. Journal of Food Science 57: 625–628. https://doi.org/10.1111/j.1365-2621.1992.tb08057.x.

    Article  CAS  Google Scholar 

  • Bouzar, F., J. Cerning, and M. Desmazeaud. 1996. Exopolysaccharide production in milk by Lactobacillus delbrueckii ssp. bulgaricus CNRZ 1187 and by two colonial variants. Journal of Dairy Science 79: 205–211.

    Article  CAS  Google Scholar 

  • Bowe, W.P., J.C. Filip, J.M. Dirienzo, A. Volgina, and D.J. Margolis. 2006. Inhibition of propionibacterium acnes by bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Journal of Drugs in Dermatology Jdd 5: 868–870.

    PubMed  PubMed Central  Google Scholar 

  • Brown, E.D., and G.D. Wright. 2016. Antibacterial drug discovery in the resistance era. Nature 529: 336.

    Article  CAS  PubMed  Google Scholar 

  • Bubb, W.A., T. Urashima, R. Fujiwara, T. Shinnai, and H. Ariga. 1997. Structural characterisation of the exocellular polysaccharide produced by Streptococcus thermophilus OR 901. Carbohydrate Research 301: 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Carlet, J., C. Pulcini, and L.J.V. Piddock. 2014. Antibiotic resistance: a geopolitical issue. Clinical Microbiology & Infection the Official Publication of the European Society of Clinical Microbiology & Infectious Diseases 20: 949.

    Article  CAS  Google Scholar 

  • Casteren, W.H.M.V., C. Dijkema, H.A. Schols, G. Beldman, and A.G.J. Voragen. 1998. Characterisation and modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B40. Carbohydrate Polymers 37: 123–130.

    Article  Google Scholar 

  • Cebrián, R., et al. 2014. Analysis of the promoters involved in enterocin AS-48 expression. PLoS One 9: e90603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerning, Jutta. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiology Reviews 7: 113–130.

    Article  CAS  PubMed  Google Scholar 

  • Cerning, J. 1995. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Le Lait 75: 463–472.

    Article  CAS  Google Scholar 

  • Cerning, J., C. Bouillanne, M.J. Desmazeaud, and M. Landon. 1986. Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnology Letters 8: 625–628.

    Article  CAS  Google Scholar 

  • ———. 1988. Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnology Letters 10: 255–260.

    Article  CAS  Google Scholar 

  • Cerning, J., C. Bouillanne, M. Landon, and M. Desmazeaud. 1992. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. Journal of Dairy Science 75: 692–699.

    Article  CAS  Google Scholar 

  • Cerning, J., et al. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Applied and Environmental Microbiology 60: 3914–3919.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chabot, S., et al. 2001. Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-gamma mouse splenocytes. Le Lait 81: 683–697.

    Article  CAS  Google Scholar 

  • Cheikhyoussef, A., N. Pogori, and H. Zhang. 2007. Study of the inhibition effects of Bifidobacterium supernatants towards growth of Bacillus cereus and Escherichia coli. International Journal of Dairy Science 2: 116–125.

    Article  Google Scholar 

  • Cheikhyoussef, A., N. Pogori, W. Chen, and H. Zhang. 2008. Antimicrobial proteinaceous compounds obtained from bifidobacteria: From production to their application. International Journal of Food Microbiology 125: 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Cheikhyoussef, A., et al. 2009. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances (BLIS) produced by Bifidobacterium infantis BCRC 14602. Food Control 20: 553–559.

    Article  CAS  Google Scholar 

  • ———. 2010. Bifidin I – a new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence. Food Control 21: 746–753.

    Article  CAS  Google Scholar 

  • Chen, H., et al. 2012a. Cloning and heterologous expression of a bacteriocin sakacin P from lactobacillus sakei in Escherichia coli. Applied Microbiology & Biotechnology 94: 1061.

    Article  CAS  Google Scholar 

  • ———. 2012b. Cloning, expression, and identification of a novel class IIa bacteriocin in the Escherichia coli cell-free protein expression system. Biotechnology Letters 34: 359–364.

    Article  CAS  PubMed  Google Scholar 

  • Cintas, L., et al. 2000. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. Journal of Bacteriology 182: 6806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlan, B.F., A.D. Gillon, D.J. Craik, and M.A. Anderson. 2011. Circular proteins and mechanisms of cyclization. Current Pharmaceutical Design 17: 4318–4328.

    Article  CAS  PubMed  Google Scholar 

  • Cotter, P.D., C. Hill, and R.P. Ross. 2005a. Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology 3: 777–788.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2005b. Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology 3: 777.

    Article  CAS  PubMed  Google Scholar 

  • Craik, D., J. Mylne, and N. Daly. 2010. Cyclotides: Macrocyclic peptides with applications in drug design and agriculture. Cellular & Molecular Life Sciences Cmls 67: 9.

    Article  CAS  Google Scholar 

  • de Vos, W.M. 1996. Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 223–242.

    Article  PubMed  Google Scholar 

  • De Vuyst, L., and B. Degeest. 1999a. Expolysaccharides from lactic acid bacteria: Technological bottlenecks and practical solutions. Macromolecular Symposia 140: 31–41. https://doi.org/10.1002/masy.19991400105.

    Article  Google Scholar 

  • ———. 1999b. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews 23: 153–177.

    Article  PubMed  Google Scholar 

  • De Vuyst, L., F. Vanderveken, S. Van de Ven, and B. Degeest. 1998. Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. Journal of Applied Microbiology 84: 1059–1068.

    Article  PubMed  Google Scholar 

  • Dertli, E., et al. 2013. Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. The Journal of Biological Chemistry 288: 31938–31951. https://doi.org/10.1074/jbc.M113.507418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dertli, E., M.J. Mayer, and A. Narbad. 2015. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiology 15: 8. https://doi.org/10.1186/s12866-015-0347-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doco, T., et al. 1990. Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydrate Research 198: 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Drider, D., and D. Drider. 2011a. Prokaryotic antimicrobial peptides. New York: Springer.

    Book  Google Scholar 

  • ———. 2011b. Prokaryotic antimicrobial peptides. New York: Springer.

    Book  Google Scholar 

  • Drider, D., G. Fimland, Y. Héchard, L.M. McMullen, and H. Prévost. 2006. The continuing story of class IIa bacteriocins. Microbiology and molecular biology reviews : MMBR 70: 564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duboc, P., and B. Mollet. 2001. Applications of exopolysaccharides in the dairy industry. International Dairy Journal 11: 759–768. https://doi.org/10.1016/s0958-6946(01)00119-4.

    Article  CAS  Google Scholar 

  • Eijsink, V.G., M. Skeie, P.H. Middelhoven, M.B. Brurberg, and I.F. Nes. 1998. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Applied and Environmental Microbiology 64: 3275–3281.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ennahar, S., T. Sashihara, K. Sonomoto, and A. Ishizaki. 2000. Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiology Reviews 24: 85.

    Article  CAS  PubMed  Google Scholar 

  • Escalante, A., C. Wacher-Rodarte, M. Garcia-Garibay, and A. Farres. 1998. Enzymes involved in carbohydrate metabolism and their role on exopolysaccharide production in Streptococcus thermophilus. Journal of Applied Microbiology 84: 108–114.

    Article  CAS  PubMed  Google Scholar 

  • Espeche, M.C., M.S. Juárez Tomás, B. Wiese, E. Bru, and M.E. Nader-Macías. 2014. Physicochemical factors differentially affect the biomass and bacteriocin production by bovine Enterococcus mundtii CRL1656. Journal of Dairy Science 97: 789–797.

    Article  CAS  PubMed  Google Scholar 

  • Espitia, P.J., et al. 2013. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers 94: 199.

    Article  CAS  PubMed  Google Scholar 

  • Faber, E.J., J.P. Kamerling, V. Jfg, and P. Zoon. 1998. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydrate Research 310: 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Forsén, R., and V.M. Häivä. 1981. Induction of stable slime-forming and mucoid states by p -fluorophenylalanine in lactic streptococci. FEMS Microbiology Letters 12: 409–413.

    Article  Google Scholar 

  • Forsén, R., E. Heiska, E. Herva, and H. Arvilommi. 1987. Immunobiological effects of Streptococcus cremoris from cultured milk ‘viili’; application of human lymphocyte culture techniques. International Journal of Food Microbiology 5: 41–47.

    Article  Google Scholar 

  • Fujita, K., et al. 2007. Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of Gram-positive bacteria. Applied & Environmental Microbiology 73: 2871–2877.

    Article  CAS  Google Scholar 

  • Gamar, L., K. Blondeau, and J.M. Simonet. 1997. Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. Journal of Applied Microbiology 83: 281–287.

    Article  CAS  Google Scholar 

  • Garcia-Garibay, M., and V.M.E. Marshall. 2008. Polymer production by Lactobacillus delbrueckii ssp. bulgaricus. Journal of Applied Microbiology 70: 325–328.

    Google Scholar 

  • German, B., et al. 1999. The development of functional foods: Lessons from the gut. Trends in Biotechnology 17: 492–499. https://doi.org/10.1016/s0167-7799(99)01380-3.

    Article  CAS  PubMed  Google Scholar 

  • Ghodhbane, H., et al. 2015. Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections. Infectious Disorders Drug Targets 15: 2–12.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, G.R., and M.B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition 125: 1401–1412.

    CAS  PubMed  Google Scholar 

  • Grobben, G.J., J. Sikkema, M.R. Smith, and J.A.M.D. Bont. 1995. Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. Journal of Applied Microbiology 79: 103–107.

    CAS  Google Scholar 

  • Grobben, G.J., M.R. Smith, J. Sikkema, and J.A.M.D. Bont. 1996. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Applied Microbiology and Biotechnology 46: 279–284.

    Article  CAS  Google Scholar 

  • Grobben, G.J., et al. 1997. Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Applied Microbiology and Biotechnology 48: 516–521.

    Article  CAS  Google Scholar 

  • Gruter, M., B.R. Leeflang, J. Kuiper, J.P. Kamerling, and J.F. Vliegenthart. 1992. Structure of the exopolysaccharide produced by Lactococcus lactis subspecies cremoris H414 grown in a defined medium or skimmed milk. Carbohydrate Research 231: 273–291.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1993. Structural characterisation of the exopolysaccharide produced by Lactobacillus delbruckii subspecies bulgaricus rr grown in skimmed milk. Carbohydrate Research 239: 209–226.

    Article  CAS  PubMed  Google Scholar 

  • Hammami, R. et al. 2011. Database mining for bacteriocin discovery

    Google Scholar 

  • Hassan, A.N., J.F. Frank, K.A. Schmidt, and S.I. Shalabi. 1996. Textural properties of yogurt made with encapsulated nonropy lactic cultures. Journal of Dairy Science 79: 2098–2103.

    Article  CAS  Google Scholar 

  • Hegemann, J.D., M. Zimmermann, X. Xie, and M.A. Marahiel. 2015. Lasso peptides: An intriguing class of bacterial natural products. Accounts of Chemical Research 48: 1909.

    Article  CAS  PubMed  Google Scholar 

  • Heng, N.C.K., and J.R. Tagg. 2006. What’s in a name? Class distinction for bacteriocins. Nature Reviews Microbiology 4: 117e129.

    Article  CAS  Google Scholar 

  • Hess, S.J., R.F. Roberts, and G.R. Ziegler. 1997. Rheological properties of nonfat yogurt stabilized using Lactobacillus delbrueckii ssp. bulgaricus producing exopolysaccharide or using commercial stabilizer systems. Journal of Dairy Science 80: 252–263.

    Article  CAS  Google Scholar 

  • Higashimura, M., B.W. Mulder-Bosman, R. Reich, T. Iwasaki, and G.W. Robijn. 2000. Solution properties of viilian, the exopolysaccharide from Lactococcus lactis subsp. cremoris SBT 0495. Biopolymers 54: 143–158. https://doi.org/10.1002/1097-0282(200008)54:2<143::AID-BIP7>3.0.CO;2-Q.

    Article  CAS  PubMed  Google Scholar 

  • Himeno, K., et al. 2012. Identification of enterocin NKR-5-3C, a novel class IIa bacteriocin produced by a multiple bacteriocin producer, Enterococcus faecium NKR-5-3. Journal of the Agricultural Chemical Society of Japan 76: 1245–1247.

    CAS  Google Scholar 

  • Horn, N., et al. 2013. Spontaneous mutation reveals influence of exopolysaccharide on Lactobacillus johnsonii surface characteristics. PLoS One 8: e59957. https://doi.org/10.1371/journal.pone.0059957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosono, A., et al. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Bioscience, Biotechnology, and Biochemistry 61: 312–316.

    Article  CAS  PubMed  Google Scholar 

  • Howell, T.H., et al. 1993. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. Journal of Clinical Periodontology 20: 335–339.

    Article  CAS  PubMed  Google Scholar 

  • Iwatani, S., T. Zendo, F. Yoneyama, J. Nakayama, and K. Sonomoto. 2007. Characterization and structure analysis of a novel bacteriocin, lacticin Z, produced by Lactococcus lactis QU 14. Bioscience, Biotechnology, and Biochemistry 71: 1984.

    Article  CAS  PubMed  Google Scholar 

  • Iwatani, S., et al. 2012. Identification of the genes involved in the secretion and self-immunity of lacticin Q, an unmodified leaderless bacteriocin from Lactococcus lactis QU 5. Microbiology 158: 2927.

    Article  CAS  PubMed  Google Scholar 

  • Iwatani, S., Y. Horikiri, T. Zendo, J. Nakayama, and K. Sonomoto. 2013. Bifunctional gene cluster lnqBCDEF mediates bacteriocin production and immunity with differential genetic requirements. Applied & Environmental Microbiology 79: 2446.

    Article  CAS  Google Scholar 

  • Izquierdo, E., C. Wagner, E. Marchioni, D. Aoudewerner, and S. Ennahar. 2009. Enterocin 96, a novel class II bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese. Applied & Environmental Microbiology 75: 4273.

    Article  CAS  Google Scholar 

  • Joerger, M.C., and T.R. Klaenhammer. 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. Journal of Bacteriology 167: 439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly, L., S.J.F. Vincent, P. Duboc, and J.-R. Neeser. 2002. Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82: 367–374. https://doi.org/10.1023/a:1020668523541.

    Article  CAS  PubMed  Google Scholar 

  • Kang, B.S., et al. 2009. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. Journal of Microbiology 47: 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, B., P.P. Balgir, B. Mittu, B. Kumar, and N. Garg. 2013. Biomedical applications of fermenticin HV6b isolated from Lactobacillus fermentum HV6b MTCC10770. BioMed Research International 2013 (168438): 1.

    Google Scholar 

  • Kiss, A., et al. 2008. Cloning and characterization of the DNA region responsible for Megacin A-216 production in Bacillus megaterium 216. Journal of Bacteriology 190: 6448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitazawa, H., et al. 1991. Antitumoral activity of slime-forming, encapsulated Lactococcus lactis subsp. cremoris isolated from Scandinavian ropy sour milk, “viili”. Nihon Chikusan Gakkaiho 62: 277–283.

    Article  Google Scholar 

  • Kitazawa, H., T. Yamaguchi, and T. Itoh. 1992. B-cell mitogenic activity of slime products produced from slime-forming, encapsulated Lactococcus lactis ssp. cremoris. Journal of Dairy Science 75: 2946–2951. https://doi.org/10.3168/jds.S0022-0302(92)78057-6.

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa, H., T. Yamaguchi, M. Miura, T. Saito, and T. Itoh. 1993. B-cell mitogen produced by slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk, viili. Journal of Dairy Science 76: 1514–1519. https://doi.org/10.3168/jds.S0022-0302(93)77483-4.

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa, H., T. Itoh, Y. Tomioka, M. Mizugaki, and T. Yamaguchi. 1996. Induction of IFN-gamma and IL-1 alpha production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. International Journal of Food Microbiology 31: 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa, H., et al. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. International Journal of Food Microbiology 40: 169–175. https://doi.org/10.1016/s0168-1605(98)00030-0.

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer, T.R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews 12: 39–85.

    Article  CAS  PubMed  Google Scholar 

  • Kojic, M., et al. 1992. Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Applied and Environmental Microbiology 58: 4086–4088.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, C.Y., S. Tran, and R.S. Simmonds. 2002. Functional characterization of domains found within a lytic enzyme produced by Streptococcus equi subsp. zooepidemicus. FEMS Microbiology Letters 215: 133–138.

    Article  CAS  PubMed  Google Scholar 

  • Laws, A., Y. Gu, and V. Marshall. 2001. Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnology Advances 19: 597–625. https://doi.org/10.1016/s0734-9750(01)00084-2.

    Article  CAS  PubMed  Google Scholar 

  • Lemoine, J., et al. 1997. Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFi39 and SFi12. Applied and Environmental Microbiology 63: 3512–3518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liong, M.T. 2015. Beneficial microorganisms in medical and health applications. Cham: Springer.

    Book  Google Scholar 

  • Looijesteijn, P.J., W.H. van Casteren, R. Tuinier, C.H. Doeswijk-Voragen, and J. Hugenholtz. 2000. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. Journal of Applied Microbiology 89: 116–122.

    Article  CAS  PubMed  Google Scholar 

  • Macura, D., and P.M. Townsley. 1984. Scandinavian ropy milk — Identification and characterization of endogenous ropy Lactic Streptococci and their extracellular excretion 1. Journal of Dairy Science 67: 735–744.

    Article  CAS  Google Scholar 

  • Maisnier-Patin, S., N. Deschamps, S.R. Tatini, and J. Richard. 1992. Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Dairy Science & Technology 72: 249–263.

    Article  CAS  Google Scholar 

  • Mandal, V., S.K. Sen, and N.C. Mandal. 2011. Isolation and characterization of Pediocin NV 5 producing Pediococcus acidilactici LAB 5 from vacuum-packed fermented meat product. Indian Journal of Microbiology 51: 22–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manosroi, A., et al. 2010. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. International Journal of Pharmaceutics 392: 304–310.

    Article  CAS  PubMed  Google Scholar 

  • Maqueda, M., et al. 2008. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiology Reviews 32: 2–22.

    Article  CAS  PubMed  Google Scholar 

  • Marle, M.E.V., and P. Zoon. 1995. Permeability and rheological properties of microbially and chemically acidified skim-milk gels. Netherlands Milk & Dairy Journal 49: 47–65.

    Google Scholar 

  • Marle, M.E.V., D.V.D. Ende, C.G.D. Kruif, and J. Mellema. 1999. Steady-shear viscosity of stirred yogurts with varying ropiness. Journal of Rheology 43: 1643–1662.

    Article  Google Scholar 

  • Marshall, V.M., and E.N. Cowie. 1995. Analysis and production of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330. Journal of Dairy Research 62: 621–628.

    Article  CAS  Google Scholar 

  • Marshall, V.M., and H.L. Rawson. 1999. Effects of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. International Journal of Food Science & Technology 34: 137–143.

    Article  CAS  Google Scholar 

  • Masuda, Y., et al. 2011. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Applied & Environmental Microbiology 77: 8164.

    Article  CAS  Google Scholar 

  • Masuda, Y., T. Zendo, and K. Sonomoto. 2012. New type non-lantibiotic bacteriocins: Circular and leaderless bacteriocins. Beneficial Microbes 3: 3–12.

    Article  CAS  PubMed  Google Scholar 

  • Michalet, S., et al. 2007. N-caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors. Bioorganic & Medicinal Chemistry Letters 17: 1755.

    Article  CAS  Google Scholar 

  • Montalbánlópez, M., L. Zhou, A. Buivydas, A.J. van Heel, and O.P. Kuipers. 2012. Increasing the success rate of lantibiotic drug discovery by Synthetic Biology. Expert Opinion on Drug Discovery 7: 695.

    Article  CAS  Google Scholar 

  • Mozzi, F., G.G. de Savoy, and G. Oliver. 1996. Exopolysaccharide production by Lactobacillus casei in milk under different growth conditions. Milchwissenschaft-Milk Science International 51: 670–673.

    CAS  Google Scholar 

  • Mu, F., et al. 2014. Biological function of a DUF95 superfamily protein involved in the biosynthesis of a circular bacteriocin, leucocyclicin Q. Journal of Bioscience and Bioengineering 117: 158.

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka, M., S. Hashimoto, T. Watanabe, T. Yokokura, and Y. Mori. 1994. Anti-ulcer effects of lactic acid bacteria and their cell wall polysaccharides. Biological & Pharmaceutical Bulletin 17: 1012–1017.

    Article  CAS  Google Scholar 

  • Nakajima, H., et al. 1990. A novel phosphopolysaccharide from slime-forming Lactococcus lactis subspecies cremoris SBT 0495. Journal of Dairy Science 73: 1472–1477.

    Article  CAS  Google Scholar 

  • Nakajima, H., Y. Suzuki, and T. Hirota. 1992a. Cholesterol lowering activity of ropy fermented milk. Journal of Food Science 57: 1327–1329. https://doi.org/10.1111/j.1365-2621.1992.tb06848.x.

    Article  CAS  Google Scholar 

  • Nakajima, H., T. Hirota, T. Toba, T. Itoh, and S. Adachi. 1992b. Structure of the extracellular polysaccharide from slime-forming Lactococcus lactis subsp. cremoris SBT 0495. Carbohydrate Research 224: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima, H., T. Toba, and S. Toyoda. 1995. Enhancement of antigen-specific antibody production by extracellular slime products from slime-forming Lactococcus lactis subspecies cremoris SBT 0495 in mice. International Journal of Food Microbiology 25: 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Naoki, I., et al. 2012. Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish. Journal of the Agricultural Chemical Society of Japan 76: 947–953.

    Google Scholar 

  • Nes, I.F., et al. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113.

    Article  CAS  PubMed  Google Scholar 

  • Nilsen, T., I.F. Nes, and H. Holo. 2003. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Applied & Environmental Microbiology 69: 2975–2984.

    Article  CAS  Google Scholar 

  • Nilsson, B., and G. Nilsson. 1958. Studies concerning Swedish ropy milk. Archives of Microbiology 31: 191–197.

    Google Scholar 

  • Nissenmeyer, J., C. Oppegård, P. Rogne, H.S. Haugen, and P.E. Kristiansen. 2010. Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics & Antimicrobial Proteins 2: 52.

    Article  CAS  Google Scholar 

  • Nissen-Meyer, J., H. Holo, L.S. Håvarstein, K. Sletten, and I.F. Nes. 1992. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. Journal of Bacteriology 174: 5686–5692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norris, R.F., M. De Sipin, F.W. Zilliken, T.S. Harvey, and P. Gyorgy. 1954. Occurrence of mucoid variants of Lactobacillus bifidus; demonstration of extracellular and intracellular polysaccharide. Journal of Bacteriology 67: 159–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’ Shea, E.F., P.D. Cotter, R.P. Ross, and C. Hill. 2013. Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Current Opinion in Biotechnology 24: 130–134.

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke, A.L.D., R.S. Simmonds, A.S. Gargis, and G.L. Sloan. 2009. Prevalence and acquisition of the genes for zoocin A and zoocin A resistance in Streptococcus equi subsp. zooepidemicus. Journal of Molecular Evolution 68: 498–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oba, T., et al. 1999. Viscoelastic properties of aqueous solutions of the phosphopolysaccharide “viilian” from Lactococcus lactis subsp. cremoris SBT 0495. Carbohydrate Polymers 39: 275–281.

    Article  CAS  Google Scholar 

  • Oda, M., H. Hasegawa, S. Komatsu, M. Kambe, and F. Tsuchiya. 1983. Anti-tumor polysaccharide from Lactobacillus sp. Agricultural & Biological Chemistry 47: 1623–1625.

    Article  CAS  Google Scholar 

  • Oppegård, C., et al. 2007. The two-peptide class II bacteriocins: Structure, production, and mode of action. Journal of Molecular Microbiology & Biotechnology 13: 210–219.

    Article  CAS  Google Scholar 

  • Ovchinnikov, K.V., et al. 2014. Defining the structure and receptor binding domain of the leaderless bacteriocin LsbB. Journal of Biological Chemistry 289: 23838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papagianni, M. 2003. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnology Advances 21: 465–499.

    Article  CAS  PubMed  Google Scholar 

  • Patricia, A.S., M.L. Manuel, D. Mu, and O.P. Kuipers. 2016. Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology & Biotechnology 100: 2939–2951.

    Article  CAS  Google Scholar 

  • Perez, R.H., T. Zendo, and K. Sonomoto. 2014. Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories 13: 1–13.

    Article  Google Scholar 

  • Piper, C., L.A. Draper, P.D. Cotter, R.P. Ross, and C. Hill. 2009. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. Journal of Antimicrobial Chemotherapy 64: 546–551.

    Article  CAS  PubMed  Google Scholar 

  • Rawson, H.L., and V.M. Marshall. 2003. Effect of ‘ropy’ strains of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus on rheology of stirred yogurt. International Journal of Food Science & Technology 32: 213–220.

    Article  Google Scholar 

  • Rea, M.C., et al. 2007. Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. Journal of Medical Microbiology 56: 940–946.

    Article  CAS  PubMed  Google Scholar 

  • Richard, C., et al. 2006. Evidence on correlation between number of disulfide bridge and toxicity of class IIa bacteriocins. Food Microbiology 23: 175.

    Article  CAS  PubMed  Google Scholar 

  • Riley, M.A., and J.E. Wertz. 2002. Bacteriocins: Evolution, ecology, and application. Annual Review of Microbiology 56: 117.

    Article  CAS  PubMed  Google Scholar 

  • Robijn, G.W., D.J. van den Berg, H. Haas, J.P. Kamerling, and J.F. Vliegenthart. 1995a. Determination of the structure of the exopolysaccharide produced by Lactobacillus sake 0-1. Carbohydrate Research 276: 117–136.

    Article  CAS  PubMed  Google Scholar 

  • Robijn, G.W., et al. 1995b. The structure of the exopolysaccharide produced by Lactobacillus helveticus 766. Carbohydrate Research 276: 137–154.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1996a. Structural studies of the exopolysaccharide produced by Lactobacillus paracasei 34-1. Carbohydrate Research 285: 129–139.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1996b. Structural characterization of the exopolysaccharide produced by Lactobacillus acidophilus LMG9433. Carbohydrate Research 288: 203–218.

    Article  CAS  PubMed  Google Scholar 

  • Ruijssenaars, H.J., F. Stingele, and S. Hartmans. 2000. Biodegradability of food-associated extracellular polysaccharides. Current Microbiology 40: 194–199.

    Article  CAS  PubMed  Google Scholar 

  • Rutledge, P.J., and G.L. Challis. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology 13: 509–523.

    Article  CAS  PubMed  Google Scholar 

  • Sabo, S.D.S., M. Vitolo, and J.M.D. González. 2014. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International 64: 527–536.

    Article  CAS  Google Scholar 

  • Salminen, S., et al. 1998. Functional food science and gastrointestinal physiology and function. The British Journal of Nutrition 80 (Suppl 1): S147–S171.

    Article  CAS  PubMed  Google Scholar 

  • Sánchezhidalgo, M., et al. 2011a. AS-48 bacteriocin: Close to perfection. Cellular & Molecular Life Sciences Cmls 68: 2845–2857.

    Article  CAS  Google Scholar 

  • ———. 2011b. AS-48 bacteriocin: Close to perfection. Cellular & Molecular Life Sciences 68: 2845–2857.

    Article  CAS  Google Scholar 

  • Sawa, N., et al. 2009. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Applied & Environmental Microbiology 75: 1552–1558.

    Article  CAS  Google Scholar 

  • Sebastiani, H., and G. Zelger. 1998. Texture formation by thermophilic lactic acid bacteria. Milchwissenschaft-Milk Science International 53: 15–20.

    CAS  Google Scholar 

  • Shao, L., et al. 2014. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydrate Polymers 107: 51.

    Article  CAS  PubMed  Google Scholar 

  • Shelburne, C.E., et al. 2007. The spectrum of antimicrobial activity of the bacteriocin subtilosin. Journal of Antimicrobial Chemotherapy 59: 297.

    Article  CAS  PubMed  Google Scholar 

  • Siegers, K., and K.D. Entian. 1995. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Applied & Environmental Microbiology 61: 1082.

    CAS  Google Scholar 

  • Sjöberg, A., and B. Hahnhägerdal. 1989. β-glucose-1-phosphate, a possible mediator for polysaccharide formation in maltose-assimilating Lactococcus lactis. Applied & Environmental Microbiology 55: 1549.

    Google Scholar 

  • Skriver, A., W. Buchheim, and K.B. Qvist. 1995. Electron microscopy of stirred yoghurt: Ability of three techniques to visualize exo-polysaccharides from ropy strains. Milchwissenschaft-Milk Science International 50: 683–686.

    CAS  Google Scholar 

  • Stingele, F., J.R. Neeser, and B. Mollet. 1996. Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. Journal of Bacteriology 178: 1680–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingele, F., et al. 1999. Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: Production and characterization of an altered polysaccharide. Molecular Microbiology 32: 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  • Suda, S., P.D. Cotter, C. Hill, and R.P. Ross. 2012. Lacticin 3147--biosynthesis, molecular analysis, immunity, bioengineering and applications. Current Protein & Peptide Science 13: 193.

    Article  CAS  Google Scholar 

  • Sundman, V., et al. 1953. On the protein character of a slime produced by Streptococcus cremoris in finnish ropy sour milk. Acta Chemica Scandinavica 7: 558–560.

    Article  CAS  Google Scholar 

  • Sutherland, I.W. 1972. Bacterial exopolysaccharides. Advances in Microbial Physiology 8: 143–213.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1982. Biosynthesis of microbial exopolysaccharides. Advances in Microbial Physiology 23: 79–150.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1985. Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annual Review of Microbiology 39: 243–270.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland, I. 1990. Biotechnology of microbial exopolysaccharides. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tagg, J.R. 2004. Prevention of streptococcal pharyngitis by anti-Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian Journal of Medical Research 119 (Suppl): 13–16.

    CAS  PubMed  Google Scholar 

  • Tagg, J.R., A.S. Dajani, and L.W. Wannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriological Reviews 40: 722.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toba, T., et al. 1991. A new fermented milk using capsular polysaccharide-producing Lactobacillus kefiranofaciens isolated from kefir grains. Journal of Dairy Research 58: 497–502.

    Article  Google Scholar 

  • Tomita, H., S. Fujimoto, K. Tanimoto, and Y. Ike. 1996. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. Journal of Bacteriology 178: 3585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towle, K.M., and J.C. Vederas. 2017. Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin-like peptides. Medchemcomm 8: 276–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuinier, R. 1999. An exocellular polysaccharide and its interactions with proteins. Landbouwuniversiteit Wageningen Promotoren Dr.

    Google Scholar 

  • Tuinier, R., P. Zoon, M.A. Stuart, G.J. Fleer, and C.G. de Kruif. 1999a. Concentration and shear-rate dependence of the viscosity of an exocellular polysaccharide. Biopolymers 50: 641–646. https://doi.org/10.1002/(SICI)1097-0282(199911)50:6<641::AID-BIP8>3.0.CO;2-D.

    Article  CAS  PubMed  Google Scholar 

  • Tuinier, R., E. ten Grotenhuis, C. Holt, P.A. Timmins, and C.G. de Kruif. 1999b. Depletion interaction of casein micelles and an exocellular polysaccharide. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 60: 848–856.

    CAS  PubMed  Google Scholar 

  • Tuinier, R., et al. 2015. Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis. Biopolymers 59: 160–166.

    Article  Google Scholar 

  • van Belkum, M.J., and M.E. Stiles. 2000. Nonlantibiotic antibacterial peptides from lactic acid bacteria. Natural Product Reports 17 (4): 323–335.

    Article  PubMed  Google Scholar 

  • van Belkum, Marco J., Leah A. Martin-Visscher, and John C. Vederas. 2011. Structure and genetics of circular bacteriocins. Trends in Microbiology 19: 411–418.

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg, D., et al. 1995. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Applied & Environmental Microbiology 61: 2840–2844.

    Google Scholar 

  • Van Heel, A.J., M. Montalban-Lopez, and O.P. Kuipers. 2011. Evaluating the feasibility of lantibiotics as an alternative therapy against bacterial infections in humans. Expert Opinion on Drug Metabolism & Toxicology 7: 675.

    Article  CAS  Google Scholar 

  • van Kranenburg, R., H.R. Vos, I.I. van Swam, M. Kleerebezem, and W.M. de Vos. 1999. Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: Complementation, expression, and diversity. Journal of Bacteriology 181: 6347–6353.

    PubMed  PubMed Central  Google Scholar 

  • Vandenberg, D.J.C., et al. 1995. Production of a novel extracellular polysaccharide by lactobacillus-sake 0-1 and characterization of the polysaccharide. Applied and Environmental Microbiology 61: 2840–2844.

    CAS  Google Scholar 

  • Vaughan, E.E., C. Daly, and G.F. Fitzgerald. 1992. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. Journal of Applied Bacteriology 73: 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Wacher-Rodarte, C., et al. 1993. Yogurt production from reconstituted skim milk using different polymer and non-polymer forming starter cultures. Journal of Dairy Research 60: 247–254.

    Article  Google Scholar 

  • Wang, M., E. Steers, and R.F. Norris. 1963. Extracellular polysaccharide of mucoid Lactobacillus Bifidus. Journal of Bacteriology 86: 898–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S., et al. 2005. Purification and characterization of two novel antimicrobial peptides subpeptin JM4-A and subpeptin JM4-B produced by Bacillus subtilis JM4. Current Microbiology 51: 292.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, Y., S. Murosaki, R. Yamauchi, K. Kato, and Y. Sone. 1994. Structural study on an exocellular polysaccharide produced by lactobacillus helveticus TY1-2. Carbohydrate Research 261: 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, Y., T. Nunome, R. Yamauchi, K. Kato, and Y. Sone. 1995. Structure of an exocellular polysaccharide of Lactobacillus helveticus TN-4, a spontaneous mutant strain of Lactobacillus helveticus TY1-2. Carbohydrate Research 275: 319–332.

    Article  CAS  PubMed  Google Scholar 

  • Yan, S., et al. 2017. Production of exopolysaccharide by Bifidobacterium longum isolated from elderly and infant feces and analysis of priming glycosyltransferase genes. RSC Advances 7: 31736–31744. https://doi.org/10.1039/c7ra03925e.

    Article  CAS  Google Scholar 

  • Yang, Z., M. Staaf, E. Huttunen, and G. Widmalm. 2000. Structure of a viscous exopolysaccharide produced by Lactobacillus helveticus K16. Carbohydrate Research 329: 465–469.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama, F., et al. 2009a. Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrobial Agents and Chemotherapy 53: 3211–3217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———. 2009b. Lacticin Q, a lactococcal bacteriocin, causes high-level membrane permeability in the absence of specific receptors. Applied and Environmental Microbiology 75: 538–541.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2011. Lacticin Q-mediated selective toxicity depending on physicochemical features of membrane components. Antimicrobial Agents & Chemotherapy 55: 2446–2450.

    Article  CAS  Google Scholar 

  • Zendo, T., et al. 2006. Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Applied & Environmental Microbiology 72: 3383–3389.

    Article  CAS  Google Scholar 

  • Zubillaga, M., et al. 2001. Effect of probiotics and functional foods and their use in different diseases. Nutrition Research 21: 569–579.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqin Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H., Narbad, A. (2018). Proteins and Exopolysaccharides of Lactic Acid Bacteria. In: Lactic Acid Bacteria in Foodborne Hazards Reduction. Springer, Singapore. https://doi.org/10.1007/978-981-13-1559-6_3

Download citation

Publish with us

Policies and ethics