Skip to main content

Novel Intermolecular Surface Force Unveils the Driving Force of the Actomyosin System

  • Chapter
  • First Online:
The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery

Abstract

In this chapter, we discuss the role of water in actomyosin-force generation. We have been investigating the hydration properties of ions, organic molecules, and proteins. These studies revealed that actin filaments (F-actin) are surrounded by a hyper-mobile water (HMW) layer and restrained water layer, while myosin subfragment 1 (S1) has only a typical restrained hydration layer. The understanding of the physicochemical properties of HMW has been greatly advanced by recent theoretical studies on statistical mechanics and solution chemistry. To explain the mechanism of force generation of actomyosin using ATP hydrolysis, we propose a driving force hypothesis based on novel intermolecular surface force. This hypothesis is consistent with the reported biochemical kinetics and thermodynamic parameters for the primary reaction steps. The gradient field of solvation free energy of S1 is generated in close proximity to F-actin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22:1255–1256

    Article  CAS  Google Scholar 

  • Bagshaw CR, Trentham DR (1974) The characterization of Myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction. Biochem J 141:331–349

    Article  CAS  Google Scholar 

  • Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell Jr AD (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brünger A, Brooks IIICL, Karplus M (1984) Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett 105:495–500

    Article  Google Scholar 

  • Chauwin JF, Ajdari A, Prost J (1994) Force-free motion in asymmetric structures: a mechanism without diffusive steps. Europhys Lett 27:421–426

    Article  CAS  Google Scholar 

  • Edmann KAP (1988) Double hyperbolic force-velocity relation in frog muscle fibers. J Physiol 404:301–321

    Article  Google Scholar 

  • Egelman EH, Orlova A (1995) New insights into actin filament dynamics. Curr Opin Struct Biol 5:172–180

    Article  CAS  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen JG (1995) A smooth particle mesh Ewald method. J Chem Phys. 103:8577–8593

    Article  CAS  Google Scholar 

  • Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: The Langevin Piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  • Fiorin G, Klein ML, Hénin J (2013) Using collective variables to drive molecular dynamics simulations. Mol Phys 111:3345–3362

    Article  CAS  Google Scholar 

  • Fujii T, Namba K (2017) Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Nat Commun 8 (1–11):13969

    Article  CAS  Google Scholar 

  • Galkin VE, Orlova1 A, Schröder GF, Egelman EH (2010) Structural polymorphism in F-actin. Nat Struct Mol Biol 17:1318–1324

    Article  CAS  Google Scholar 

  • Greene LE, Eisenberg E (1980) Dissociation of the Actin ~ Subflagment1 Complex by Adeny1-5’-yl Imidodiphosphate, ADP, and PPi. J Biol Chem 255:543–548

    CAS  PubMed  Google Scholar 

  • Hibberd MG, Dantzig JA, Trentham DR, Goldman YE (1985) Phosphate release and force generation in skeletal muscle fibers. Science 228:1317–1319

    Article  CAS  Google Scholar 

  • Hirakawa R, Nishikawa Y, Uyeda TQP, Tokuraku K (2017) Unidirectional growth of HMM clusters along actin filaments revealed by real time fluorescence microscopy. Cytoskeleton 74:482–489. https://doi.org/10.1002/cm.21408

    Article  CAS  PubMed  Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct, Bioinf 65:712–725

    Article  CAS  Google Scholar 

  • Inoue A, Tonomura Y (1980) Dissociation of Acto ~ H-Meromyosin and That of Acto-Subfragment-l Induced by Adenyl-5’-yl-imidodiphosphate: Evidence for a Ternary Complex of F-Actin, Myosin Head, and Substrate. J Biochem 88:1643–1651

    Article  CAS  Google Scholar 

  • Ishijima A, Doi T, Sakurada K, Yanagida T (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352:301–306

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kabir SR, Yokoyama K, Mihashi K, Kodama T, Suzuki M (2003) Hyper-mobile water is induced around actin filaments. Biophys J 85:3154–3161

    Article  CAS  Google Scholar 

  • Karino Y, Matubayasi N (2011) Communication: free-energy analysis of hydration effect on protein with explicit solvent: equilibrium fluctuation of cytochrome c. J Chem Phys 134(1–11):041105

    Article  Google Scholar 

  • Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle. Biophys J 59:329–342

    Article  CAS  Google Scholar 

  • Kinoshita M (2009) Importance of translational entropy of water in biological self-assembly processes like protein folding. Int J Mol Sci 10:1064–1080

    Article  CAS  Google Scholar 

  • Kinoshita M, Suzuki M (2009) A statistical-mechanical analysis on the hypermobile water around a large solute with high surface charge density. J Chem Phys 130(1–11):014707

    Article  Google Scholar 

  • Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397(6715):129–134

    Article  CAS  Google Scholar 

  • Kodama T (1985) Thermodynamic analysis on muscle ATPase mechanisms. Physiol Rev 65:467–551

    Article  CAS  Google Scholar 

  • Kubota Y, Yoshimori A, Matubayasi N, Suzuki M, Akiyama R (2012) Molecular dynamics study of fast dielectric relaxation of water around a molecular-sized ion. J Chem Phys 137(1–4):224502

    Article  Google Scholar 

  • Lawson JD, Pate E, Rayment I, Yount RG (2004) Molecular dynamics analysis of structural factors influencing the Pi-release tunnel in myosin. Biophys J 86:3794–3803

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Margossian SS, Lowey S (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. San Diego, California: Elsevier, Inc. Methods Enzymol 85 Pt B:55–71

    Google Scholar 

  • Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  • Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Miyazaki T, Wazawa T, Mogami G, Kodama T, Suzuki M (2008) Measurement of the dielectric relaxation property of water-ion loose complex in aqueous solutions of salt at low concentrations. J Phys Chem A 112:10801–10806

    Article  CAS  Google Scholar 

  • Mogami G, Wazawa T, Morimoto N, Kodama T, Suzuki M (2011) Hydration properties of adenosine phosphate series as studied by microwave dielectric spectroscopy. Biophys Chem 154:1–7

    Article  CAS  Google Scholar 

  • Mogami G, Miyazaki T, Wazawa T, Matubayasi N, Suzuki M (2013) Anion-dependence of fast relaxation component in Na-, K-halide solutions at low concentrations measured by high-resolution microwave dielectric spectroscopy. J Phys Chem A 117:4851–4862

    Article  CAS  Google Scholar 

  • Mogami G, Suzuki M, Matubayasi N (2016) Spatial-decomposition analysis of energetics of ionic hydration. J Phys Chem B 120:1813–1821

    Article  CAS  Google Scholar 

  • Muretta JM, Petersen KJ, Thomas DD (2013) Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain. Proc Natl Acad Sci USA 110:7211–7216

    Article  CAS  Google Scholar 

  • Muretta JM, Rohde JA, Johnsrud DO, Cornea S, Thomas DD (2015) Direct real-time detection of the structural and biochemical events in the myosin powerstroke. Proc Natl Acad Sci USA 112:14272–14277

    Article  CAS  Google Scholar 

  • Ngo KX, Kodera N, Katayama E, Ando T, Uyeda TQP (2015) Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy. eLife(1–22):4:e04806

    Google Scholar 

  • Oda T, Maeda Y (2010) Multiple conformations of F-actin. Structure 18:761–767

    Article  CAS  Google Scholar 

  • Oobatake M, Ooi T (1988) Characteristic thermodynamic properties of hydrated water for 20 amino acid residues in globular proteins. J Biochem 104:433–439

    Article  CAS  Google Scholar 

  • Oobatake M, Ooi T (1993) Hydration and heat stability effects on protein unfolding. Prog Biophys Mol Biol 59:237–284

    Article  CAS  Google Scholar 

  • Ohno T, Kodama T (1991) Kinetics of adenosine triphosphate hydrolysis by shortening myofibrils from rabbit psoas muscle. J Physiol 441:685–702

    Article  CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  • Prochniewicz E, Thomas DD (1997) Perturbations of functional interactions with myosin induce long-range allosteric and cooperative structural changes in actin. Biochemistry 36:12845–12853

    Article  CAS  Google Scholar 

  • Sakuraba S, Matubayasi N (2014) ERmod: fast and versatile computation software for solvation free energy with approximate theory of solutions. J Comp Chem 35:1592–1608

    Article  CAS  Google Scholar 

  • Siddique MSP, Mogami G, Miyazaki T, Katayama E, Uyeda TQP, Suzuki M (2005) Cooperative structural change of actin filaments interacting with activated myosin motor domain, detected with copolymers of pyrene-labeled actin and acto-S1 chimera protein. Biochem Biophys Res Commun 337:1185–1191

    Article  CAS  Google Scholar 

  • Spudich JA, Watt S (1971) The regulation of rabbit skeletal muscle contraction. 1. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 246:4866–4871

    CAS  PubMed  Google Scholar 

  • Stein LA, Chock PB, Eisenberg E (1981) Mechanism of the actomyosin ATPase: effect of actin on ATP hydrolysis step. Proc Natl Acad Sci USA 78:1346–1350

    Article  CAS  Google Scholar 

  • Stein LA, Chock PB, Eisenberg E (1984) The rate-limiting step in the actomyosin adenosinetriphosphate cycle. Biochemistry 23:1555–1563

    Article  CAS  Google Scholar 

  • Suzuki M (1994) New concept of a hydrophobicity motor based on local hydrophobicity transition of functional polymer substrate for micro/nano machines. Polym Gels Networks 2:279–287

    Article  CAS  Google Scholar 

  • Suzuki M, Shigematsu J, Kodama T (1996) Hydration study of proteins in solution by microwave dielectric analysis. J Phys Chem 100:7279–7282

    Article  CAS  Google Scholar 

  • Suzuki M (2004) Actomyosin motor mechanism: affinity gradient surface force model. Prog Coll Polym Sci 125:38–41

    CAS  Google Scholar 

  • Suzuki M, Kabir SR, Siddique MSP, Nazia US, Miyazaki T, Kodama T (2004) Myosin-induced volume increase of the hyper-mobile water surrounding actin filaments. Biochem Biophys Res Commun 322:340–346

    Article  CAS  Google Scholar 

  • Suzuki M (2014) What is “hypermobile” water?: detected in alkali halide, adenosine phosphate and F-actin solutions by high-resolution microwave dielectric spectroscopy. Pure Appl Chem 86:181–189

    Article  CAS  Google Scholar 

  • Suzuki M, Imao A, Mogami G, Chishima R, Watanabe T, Yamaguchi T, Morimoto N, Wazawa T (2016) Strong dependence of hydration state of F-actin on the bound Mg2+/Ca2+ ions. J Phys Chem B 120:6917–6928

    Article  CAS  Google Scholar 

  • Suzuki M, Mogami G, Ohsugi H, Watanabe T, Matubayasi N (2017) Physical driving force of actomyosin motility based on the hydration effect. Cytoskeleton 74:512–527. https://doi.org/10.1002/cm.21417

    Article  CAS  PubMed  Google Scholar 

  • Szent-Gyorgyi A (1951) Nature of the contraction of muscle. Nature 4245(1951):380–381

    Article  Google Scholar 

  • Szent-Gyorgyi A (1956) Bioenerg Sci 124:873–875

    CAS  Google Scholar 

  • Takagi Y, Shuman H, Goldman YE (2004) Coupling between phosphate release and force generation in muscle actomyosin. Philos Trans R Soc Lond B Biol Sci 359:1913–1920

    Article  CAS  Google Scholar 

  • Takashima S (2002) Electric dipole moments of globular proteins: measurement and calculation with NMR and X-ray databases. J Non-Cryst Solids 305:303–310

    Article  CAS  Google Scholar 

  • Taylor EW (1977) Transient phase of adenosine triphosphate hydrolysis by myosin, heavy meromyosin, and head. Biochemistry 17:732–740

    Article  Google Scholar 

  • UCSF Chimera. http://www.cgl.ucsf.edu/chimera/. Accessed 18 July 2017

  • Van Gunsteren WF, Berendsen HJC (1988) A Leap-frog algorithm for stochastic dynamics. Mol Simul 1:173–185

    Article  Google Scholar 

  • Volkmann N, Ouyang G, Trybus KM, DeRosier DJ, Lowey S, Hanein D (2003) Myosin isoforms show unique conformations in the actin-bound state. Proc Nat Acad Sci USA 100:3227–3232

    Article  CAS  Google Scholar 

  • Wazawa T, Sagawa T, Ogawa T, Morimoto N, Suzuki M (2011) Hyper-mobility of water around actin filaments revealed using pulse-field gradient spin-echo 1H-NMR and fluorescence spectroscopy. Biochem Biophys Res Commun 404:985–990

    Article  CAS  Google Scholar 

  • Webb MR, Hibberd MG, Goldman YE, Trentham DR (1986) Oxygene exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibers from rabbit skeletal muscle: evidence for Pi binding to a force-generating state. J Biol Chem 261:15557–15564

    CAS  PubMed  Google Scholar 

  • Woledge RC, Curtin NA, Homsher E (1985) Energetic aspects of muscle contraction, Chap 3. Academic Press, London, pp 119–165

    Google Scholar 

  • Yamamori Y, Ishizuka R, Karino Y, Sakuraba S, Matubayasi N (2016) Interaction-component analysis of the hydration and urea effects on cytochrome c. J Chem Phys 144:085102

    Article  Google Scholar 

  • Yanagida T, Arata T, Oosawa F (1985) Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316:366

    Article  CAS  Google Scholar 

  • Yokoyama K, Kamei T, Minami H, Suzuki H (2001) Hydration study of globular proteins by microwave dielectric spectroscopy. J Phys Chem B 105:12622–12627

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suzuki, M., Mogami, G., Watanabe, T., Matubayasi, N. (2018). Novel Intermolecular Surface Force Unveils the Driving Force of the Actomyosin System. In: Suzuki, M. (eds) The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery. Springer, Singapore. https://doi.org/10.1007/978-981-10-8459-1_16

Download citation

Publish with us

Policies and ethics