Skip to main content
Log in

The Important Roles of Water in Protein Folding: an Approach by Single Molecule Force Spectroscopy

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The single-chain elasticity of a completely unfolded protein ((I27)8, modules of human cardiac titin) is studied in different liquid environments by the atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS). The experimental results show that there is a clear deviation between the force curves obtained in the aqueous and nonaqueous environments. Such a deviation can be attributed to the additional energy consumed by the rearrangement of the bound water molecules around the chain of the completely unfolded (I27)8 chain upon stretching in aqueous solution, which is very similar to the partial dehydration process from a denatured/unfolded to a native/folded protein. Through the analysis of the free energy changes involved in protein folding, we conclude that it is due to the weak disturbance of water molecules and the special backbone structures of proteins that the self-assembly of proteins can be achieved in physiological conditions. We speculate that water is likely to be an important criterion for the selection of self-assembling macromolecules in the prebiotic chemical evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 2008, 108(1), 74–108.

    Article  CAS  Google Scholar 

  2. Cui, S. The possible roles of water in the prebiotic chemical evolution of DNA. Phys. Chem. Chem. Phys. 2010, 12(35), 10147–10153.

    Article  CAS  Google Scholar 

  3. Levy, Y.; Onuchic, J. N. Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 389–415.

    Article  CAS  Google Scholar 

  4. Papoian, G. A.; Ulander, J.; Eastwood, M. P.; Luthey-Schulten, Z.; Wolynes, P. G. Water in protein structure prediction. Proc. Natl. Acad. Sci. U. S. A. 2004, 101(10), 3352–3357.

    Article  CAS  Google Scholar 

  5. Scatena, L. F.; Brown, M. G.; Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 2001, 292(5518), 908–912.

    Article  CAS  Google Scholar 

  6. Cui, S.; Yu, J.; Kuehner, F.; Schulten, K.; Gaub, H. E. Double-stranded DNA dissociates into single strands when dragged into a poor solvent. J. Am. Chem. Soc. 2007, 129(47), 14710–14716.

    Article  CAS  Google Scholar 

  7. Knubovets, T.; Osterhout, J. J.; Klibanov, A. M. Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CDspectroscopies. Biotechnol. Bioeng. 1999, 63(2), 242–248.

    Article  CAS  Google Scholar 

  8. Houen, G.; Svaerke, C.; Barkholt, V. The solubilities of denatured proteins in different organic solvents. Acta. Chem. Scand. 1999, 53(12), 1122–1126.

    Article  CAS  Google Scholar 

  9. Hugel, T.; Seitz, M. The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Commun. 2001, 22(13), 989–1016.

    Article  CAS  Google Scholar 

  10. Janshoff, A.; Neitzert, M.; Oberdorfer, Y.; Fuchs, H. Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules. Angew. Chem. Int. Ed. 2000, 39(18), 3212–3237.

    Article  CAS  Google Scholar 

  11. Pang, X.; Cheng, B.; Cui, S. The solvent quality of water for poly(N-isopropylacrylamide) in the collapsed state: implications from single-molecule studies. Chinese J. Polym. Sci. 2016, 34(5), 578–584.

    Article  CAS  Google Scholar 

  12. Cheng, B.; Wu, S.; Liu, S.; Rodriguez-Aliaga, P.; Yu, J.; Cui, S. Protein denaturation at a single-molecule level: the effect of nonpolar environments and its implications on the unfolding mechanism by proteases. Nanoscale 2015, 7(7), 2970–2977.

    Article  CAS  Google Scholar 

  13. Improta, S.; Politou, A. S.; Pastore, A. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 1996, 4(3), 323–337.

    Article  CAS  Google Scholar 

  14. Lu, H.; Schulten, K. The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys. J. 2000, 79(1), 51–65.

    Article  CAS  Google Scholar 

  15. Li, H.; Oberhauser, A. F.; Fowler, S. B.; Clarke, J.; Fernandez, J. M. Atomic force microscopy reveals the mechanical design of a modular protein. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(12), 6527–6531.

    Article  CAS  Google Scholar 

  16. Carrion-Vazquez, M.; Oberhauser, A. F.; Fowler, S. B.; Marszalek, P. E.; Broedel, S. E.; Clarke, J.; Fernandez, J. M. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. U. S. A. 1999, 96(7), 3694–3699.

    Article  CAS  Google Scholar 

  17. Marszalek, P. E.; Lu, H.; Li, H. B.; Carrion-Vazquez, M.; Oberhauser, A. F.; Schulten, K.; Fernandez, J. M. Mechanical unfolding intermediates in titin modules. Nature 1999, 402(6757), 100–103.

    Article  CAS  Google Scholar 

  18. Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997, 276(5315), 1109–1112.

    Article  CAS  Google Scholar 

  19. Florin, E. L.; Rief, M.; Lehmann, H.; Ludwig, M.; Dornmair, C.; Moy, V. T.; Gaub, H. E. Sensing specific molecular-interactions with the atomic-force microscope. Biosens. Bioelectron. 1995, 10(9–10), 895–901.

    Article  CAS  Google Scholar 

  20. Zhang, W.; Zhang, X. Single molecule mechanochemistry of macromolecules. Prog. Polym. Sci. 2003, 28(8), 1271–1295.

    Article  CAS  Google Scholar 

  21. Wan, Z.; Li, L.; Cui, S. Capturing the portrait of isolated individual natural cellulose molecules. Biopolymers 2008, 89, 1170–1173.

    Article  CAS  Google Scholar 

  22. Cui, S.; Pang, X.; Zhang, S.; Yu, Y.; Ma, H.; Zhang, X. Unexpected temperature-dependent single chain mechanics of poly(N-isopropyl-acrylamide) in water. Langmuir 2012, 28(11), 5151–5157.

    Article  CAS  Google Scholar 

  23. Cui, S. X.; Albrecht, C.; Kuhner, F.; Gaub, H. E. Weakly bound water molecules shorten single-stranded DNA. J. Am. Chem. Soc. 2006, 128(20), 6636–6639.

    Article  CAS  Google Scholar 

  24. Cheung, M. S.; Garcia, A. E.; Onuchic, J. N. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl. Acad. Sci. U. S. A. 2002, 99(2), 685–690.

    Article  CAS  Google Scholar 

  25. Head-Gordon, T.; Brown, S. Minimalist models for protein folding and design. Curr. Opin. Struc. Biol. 2003, 13(2), 160–167.

    Article  CAS  Google Scholar 

  26. Kellermayer, M. S. Z.; Smith, S. B.; Granzier, H. L.; Bustamante, C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 1997, 276(5315), 1112–1116.

    Article  CAS  Google Scholar 

  27. Luo, Z.; Zhang, A.; Chen, Y.; Shen, Z.; Cui, S. How big is big enough? Effect of length and shape of side chains on the single-chain enthalpic elasticity of a macromolecule. Macromolecules 2016, 49(9), 3559–3565.

    Article  CAS  Google Scholar 

  28. Lum, K.; Chandler, D.; Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 1999, 103(22), 4570–4577.

    Article  CAS  Google Scholar 

  29. Tanford, C. Protein denaturation. Part C. Theoretical models for the mechanism of denaturation. Adv. Prot. Chem. 1970, 24, 1–95.

    Article  CAS  Google Scholar 

  30. Kharakoz, D. P. Partial volumes and compressibilities of extended polypeptide chains in aqueous solution: additivity scheme and implication of protein unfolding at normal and high pressure. Biochemistry 1997, 36(33), 10276–10285.

    Article  CAS  Google Scholar 

  31. Kumar, A.; Venkatesu, P. Overview of the stability of α-chymotrypsin in different solvent media. Chem. Rev. 2012, 112(7), 4283–4307.

    Article  CAS  Google Scholar 

  32. Larsericsdotter, H.; Oscarsson, S.; Buijs, J. Thermodynamic analysis of lysozyme adsorbed to silica. J. Colloid Interf. Sci. 2004, 276(2), 261–268.

    Article  CAS  Google Scholar 

  33. Dietz, H.; Rief, M. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl. Acad. Sci. U. S. A. 2004, 101(46), 16192–16197.

    Article  CAS  Google Scholar 

  34. Alexander, P.; Fahnestock, S.; Lee, T.; Orban, J.; Bryan, P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry 1992, 31(14), 3597–3603.

    Article  CAS  Google Scholar 

  35. Liu, C.; Cui, S.; Wang, Z.; Zhang, X. Single-chain mechanical property of poly(N-vinyl-2-pyrrolidone) and interaction with small molecules. J. Phys. Chem. B 2005, 109(31), 14807–14812.

    Article  CAS  Google Scholar 

  36. Oesterhelt, F.; Rief, M.; Gaub, H. E. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. New J. Phys. 1999, 1, 6.1–6.11.

    Article  Google Scholar 

  37. Cui, S. Single-molecule force spectroscopy of biomacromolecules: comparative studies in aqueous solution and nonpolar solvents. Acta Polymerica Sinica (in Chinese) 2016, (9), 1160–1165.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21574106 and 21604074) and the Sichuan Province Youth Science and Technology Innovation Team (Nos. 2016TD0026 and 2017JQ0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Xun Cui.

Additional information

Invited paper for special issue of “Supramolecular Self-Assembly”

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Cui, SX. The Important Roles of Water in Protein Folding: an Approach by Single Molecule Force Spectroscopy. Chin J Polym Sci 36, 379–384 (2018). https://doi.org/10.1007/s10118-018-2082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2082-2

Keywords

Navigation