Skip to main content

Microbial Cycling of Arsenic in the Aquifers of Bengal Delta Plains (BDP)

  • Chapter
  • First Online:
Advances in Soil Microbiology: Recent Trends and Future Prospects

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 3))

Abstract

The element arsenic is abundant on earth’s crust. Solubilization due to physicochemical or biologically mediated processes can lead to elevated levels of arsenic in the aquatic environments. In the Bengal Delta Plains (BDP), arsenic mobilization, in particular in aquifers and agricultural lands, has resulted in serious health manifestations among human populations residing in India and Bangladesh. Moreover, the organic matter composition has been shown to be the key component controlling arsenic fluxes in groundwater of BDP region. Microbes have the capability to alter As fluxes and thus can form the basis of cost-effective bioremediation technologies for As-free drinking water. In this chapter emphasis has been laid on the distribution of As and its fluxes across different ecosystems. The fluxes that are controlled by microbial metabolic pathways, which in turn depend on bioavailability and properties of organic matter in the environment, have been highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharyya SK, Shah BA (2007) Groundwater arsenic contamination affecting different geologic domains in India – review: influence of geological setting, fluvial geomorphology and quaternary stratigraphy. J Environ Sci Health A 42:1795–1805

    Article  CAS  Google Scholar 

  • Acharyya SK, Lahiri S, Raymahashay BC, Bhowmik A (2000) Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of quaternary stratigraphy and Holocene sea-level fluctuation. Environ Geol 39:1127–1137

    Article  CAS  Google Scholar 

  • Alam M (1989) Geology and depositional history of Cenozoic sediments of the Bengal basin of Bangladesh. Palaeogeogr Palaeoclimatol Palaeoecol 69:125–139

    Article  Google Scholar 

  • Amayo KO, Petursdottir A et al (2011) Identification and quantification of arsenolipids using reversed-phase HPLC coupled simultaneously to high-resolution ICPMS and high resolution electrospray MS without species-specific standards. Anal Chem 83(9):3589–3595

    Article  CAS  PubMed  Google Scholar 

  • Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum containing hydroxylase. J Biol Chem 267:23674–23682

    CAS  PubMed  Google Scholar 

  • Baedecker MJ, Cozzarelli IM, Eganhouse RP, Siegel DI, Bennett PC (1993) Crude oil in a shallow sand and gravel aquifer-III. Biogeochemical reactions and mass balance modelling in anoxic groundwater. Appl Geochem 8:569–586

    Article  CAS  Google Scholar 

  • Bauer M, Blodau C (2006) Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci Total Environ 354:179–190

    Article  CAS  PubMed  Google Scholar 

  • BGS, DPHE (2001) Arsenic Contamination of Groundwater in Bangladesh, in: Kinniburgh

    Google Scholar 

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta Plains, Eastern India: options for safe drinking water supply. Int J Wat Res Dev 13:79–82

    Article  Google Scholar 

  • Biswas A, Nath B, Bhattacharya P, Halder D, Kundu AK, Mandal U et al (2012) Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply. Sci Total Environ 431:402–412

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Mukherjee S, Pati S, Sengupta MK, Rahman MM, Chowdhury UK et al (2003) Arsenic groundwater contamination in middle Ganga Plain, Bihar, India: a future danger. Environ Health Perspect 111:1194–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty A, Bhadury P (2015) Effect of pollution on aquatic microbial diversity. In: Sukla LB, Pradhan N, Panda S, Mishra BK (eds) Environmental microbial biotechnology. Springer International Publishing, Cham, pp 53–75

    Google Scholar 

  • Challenger F (1951) Biological methylation. Adv Enzymol Relat Sub Biochem 1:429–491

    Google Scholar 

  • Chapelle FH, Bradley PM, Lovley DR, O’Neill K, Landmeyer JE (2002) Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer. Groundwater 40:353–360

    Article  CAS  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samantha G, Mandal B, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakrabarti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Prespect 8:393–397

    Article  Google Scholar 

  • Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:50–66

    Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Bhadury P (2016) Adaptive responses and arsenic transformation potential of diazotrophic Cyanobacteria isolated from rice fields of arsenic affected Bengal Delta Plain. J Appl Phycol 28:2777–2792

    Article  CAS  Google Scholar 

  • Dowling CB, Poreda RJ, Basu AR, Peters SL (2002) Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Wat Res 38:1–18

    Google Scholar 

  • Drewniak L, Matlakowska R, Rewerski B, Sklodowska A (2010) Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria. Hydrometallurgy 104:437–442

    Article  CAS  Google Scholar 

  • Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64

    Article  CAS  PubMed  Google Scholar 

  • Emsley J (2001) Nature’s building blocks: an A-Z guide to the elements, vol 43. Oxford University Press, Oxford, pp 513–529. isbn 0-19-850341-5

    Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Ganguly S (1997) Petroleum geology and exploration history of the Bengal Basin in India and Bangladesh. Indian J Geol 69:1–25

    Google Scholar 

  • Gao S, Buran RG (1997) Environmental factors affecting rates of arsine evolution from mineralization of arsenicals in soil. J Environ Qual 26:753–763

    Article  CAS  Google Scholar 

  • Garai R, Chakraborti AK, Dey SB, Saha KC (1984) Chronic arsenic poisoning from tubewell water. J Ind Med Assoc 82:34–35

    CAS  Google Scholar 

  • Ghosh D, Bhadury P, Routh J (2014) Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India. Front Microbiol 5:602

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Routh J, Bhadury P (2015a) Characterization and microbial utilization of dissolved lipid organic fraction in arsenic impacted aquifers (India). J Hydrol 527:221–223

    Article  CAS  Google Scholar 

  • Ghosh D, Routh J, Därio M, Bhadury P (2015b) Elemental and biomarker characteristics in a Pleistocene aquifer vulnerable to arsenic contamination in the Bengal Delta Plain, India. Appl Geochem 61:87–98

    Article  CAS  Google Scholar 

  • Goyer RA, Clarkson TW (2001) Toxic effects of metals. Casarett & Doull’s toxicology: the basic of poisons, 6th edn. McGraw Hill, New York

    Google Scholar 

  • Green HH (1918) Isolation and description of a bacterium causing oxidation of arsenite to arsenate in cattle-dipping baths. Rept Direct Vet South Africa 6:593–599

    Google Scholar 

  • Gulledge JH, O'Connor JT (1973) Removal of As(V) from water by adsorption on aluminum and ferric hydroxide. J Am Water Works Assoc 65:548

    Article  CAS  Google Scholar 

  • HĂ©ry M, van Dongen BE, Gill F, Mondal D, Vaughan DJ, Pancost RD, Polya DA, Lloyd JR (2010) Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 8:166–168

    Article  Google Scholar 

  • Hopenhayn C (2006) Arsenic in drinking water: impact on human health. Elements 2:103–107

    Article  CAS  Google Scholar 

  • Hossain M, Bhattacharya P, Frape SK, Jacks G, Islam MM, Rahman MM et al (2014) Sediment color tool for targeting arsenic-safe aquifers for the installation of shallow drinking water tubewells. Sci Total Environ 493:615–625

    Article  CAS  PubMed  Google Scholar 

  • Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA, Santini JM (2007) Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 9:934–943

    Article  CAS  PubMed  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68e71

    Article  Google Scholar 

  • Judd KE, Crump BC, Kling GW (2006) Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068–2079

    Article  PubMed  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton. 315 pp

    Google Scholar 

  • Kartinen EO, Martin CJ (1995) An overview of arsenic removal processes. Desalination 103:79–88

    Article  CAS  Google Scholar 

  • Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies MA, Goulhen-Chollet F (2010) Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol 10:53–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Kossoff D, Hudson-Edwards KA (2012) The metabolism of arsenite. In: Santini JM, Ward SM (eds) Arsenic in the environment, vol 5. CRC Press, London, pp 1–23

    Google Scholar 

  • Lawson M, Polya DA, Boyce AJ, Bryant C, Mondal D, Shantz A, Ballentine CJ (2013) Pond-derived organic carbon driving changes in arsenic hazard found in Asian groundwaters. Environ Sci Technol 47:7085–7094

    Article  CAS  PubMed  Google Scholar 

  • Lebrun E, Santini JM, Brugna M, Ducluzeau AL, Ouchane S, Cothenet BS et al (2006) The Rieske protein: a case study on the pit falls of multiple sequence alignments and phylogenetic reconstruction. Mol Biol Evol 23:1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Lehr CR, Polishchuk E, Delisle MC, Franz C, Cullen WR (2003) Arsenic methylation by microorganisms isolated from sheepskin bedding materials. Hum Exp Toxicol 22:325–334

    Article  CAS  PubMed  Google Scholar 

  • Lett MC, Muller D, Lievremont D, Silver S, Santini J (2012) Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol 194:207–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay JF, Holliday DW, Hulbert AG (1991) Sequence stratigraphy and the evolution of the Ganges–Brahmaputra Delta Complex. Am Assoc Petr Geol Bull 75:1233–1254

    Google Scholar 

  • Liu SX, Athar M, Lippai I, Waldren C, Hei TK (2001) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci U S A 98:1643–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovely DR, Anderson RT (2000) Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeol J 8(1):77–88

    Article  Google Scholar 

  • Lukasz D, Liwia R, Aleksandra M, Aleksandra S (2014) Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization. Biomed Res Int 2014:841–892

    Article  Google Scholar 

  • Lunde G (1968) Analysis of arsenic in marine oils by neutron activation. Evidence of arseno organic compounds. J Am Oil Chem Soc 45(5):331–332

    Article  CAS  PubMed  Google Scholar 

  • Mailloux BJ, Alexandrova E, Keimowitz AR, Wovkulich K, Freyer GA, Herron M, Stolz JF, Kenna TC, Pichler T, Polizzotto ML, Dong H, Bishop M, Knappett PSK (2009) Microbial mineral weathering for nutrient acquisition releases arsenic. Appl Environ Microbio 75:2558–2565

    Article  CAS  Google Scholar 

  • Maki T, Takeda N, Hasegawa H, Ueda K (2006) Isolation of monomethylarsonic acid-mineralizing bacteria from arsenic contaminated soils of Ohkunoshima Island. Appl Organomet Chem 20:538–544

    Article  CAS  Google Scholar 

  • Maki T, Hirota W, Ueda K, Hasegawa H, Azizur Rahman M (2009) Seasonal dynamics of biodegradation activities for dimethylarsinic acid (DMA) in Lake Kahokugata. Chemosphere 77:36–42

    Article  CAS  PubMed  Google Scholar 

  • Mandal B, Suzuki K (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • McArthur JM, Ravenscroft P, Safiullah S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117

    Article  CAS  Google Scholar 

  • Milici RC, Warwick PD, Attansai E, Wandrey CJ (2002) To sell or not sell: assessments of Bangladesh hydrocarbons. Oil and Gas Journal 100:24–28

    Google Scholar 

  • Mladenov N, Zheng Y, Miller MP, Nemergut D, Legg T, Simone B, Hageman C, Rahman MM, Ahmed KM, McKnight DM (2010) Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ Sci Technol 44:123–128

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MA, Hasegawa H, Lim RP (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 35:116–118

    Google Scholar 

  • Ravenscroft P, McArthur JM, Hoque BA (2001) Geochemical and palaeohydrological controls in pollution of groundwater by arsenic. In: Chappell WR, Abernathy CO, Calderon R (eds) Arsenic exposure and health effects IV. Elsevier Science Ltd, Oxford, pp 53–78

    Google Scholar 

  • Rensing C, Rosen BP (2009) Heavy metals cycles (arsenic, mercury, selenium, others). In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 205–219

    Chapter  Google Scholar 

  • Ridley WP, Dizikes L, Cheh A, Wood JM (1977) Recent studies on biomethylation and biodemethylation of toxic elements. Environ Health Perspect 19:43–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen B (1999) Families of arsenic transporters. Trends Microbiol 7:207–212

    Article  CAS  PubMed  Google Scholar 

  • Rowland HAL, Boothman C, Pancoast R, Gault AG, Polya DA, Lloyd JR (2009) The role of indigenous microbes in the biodegradation of naturally occurring petroleum, the reduction of iron, and mobilization of arsenite from West Bengal aquifer sediments. J Environ Qual 38:1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Roychowdhury T, Uchino T, Tokunaga H, Ando M (2002) Survey of arsenic in food composites from arsenic affected area of West Bengal, India. Food Chem Toxicol 40:1611–1621

    Article  CAS  PubMed  Google Scholar 

  • Saltikov CW, Newman DK (2003) Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A 100:10983–10988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology 22(2):363–376

    Article  CAS  PubMed  Google Scholar 

  • Shah AQ, Kazi TG, Arain MB, Jamali MK, Afridi HI, Jalbani N, Baig JA, Kandhro GA (2009) Accumulation of arsenic in different fresh water fish species – potential contribution to high arsenic intakes. Food Chem 112:520–524

    Article  CAS  Google Scholar 

  • Shariatpanahi M, Anderson AC, Abdelghani AA, Englande AJ, Hugheres J, Wilkinson RF (1981) Biotransformation of the pesticide, sodium arsenate. J Environ Sc and Health 16:35–37

    Article  CAS  Google Scholar 

  • Shore A, Fritsch A, Heim M, Schuh A, Thoennessen M (2010) Discovery of the arsenic isotopes. At Data Nucl Data Tables 96:299–306

    Article  CAS  Google Scholar 

  • Shrivastava A, Ghosh D, Dash A, Bose S (2015) Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Curr Pollut Rep 1:35–46

    Article  CAS  Google Scholar 

  • Sierra-Alvarez R, Yenal U, Field JA, Kopplin M, Gandolfi AJ, Garbarino JR (2006) Anaerobic biotransformation of organo-arsenical pesticides monomethylarsonic acid and dimethylarsinic acid. J Agric Food Chem 54:3959–3966

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2010) Microbial arsenic metabolism: new twists on an old poison. Microbe 5:53–59

    Google Scholar 

  • Sultana M, Härtig C, Friedrich BP, Seifert J, Schlömann M (2011) Bacterial communities in Bangladesh aquifers differing in aqueous arsenic concentration. Geomicrobiol J 28:191–211

    Article  Google Scholar 

  • Sultana M, Vogler S, Zargar K, Schmidt AC, Saltikov C, Seifert J, Schlömann M (2012) New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Arch Microbiol 194:623–635

    Article  CAS  PubMed  Google Scholar 

  • Townsend GT, Prince RG, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Eviron Sci Technol 27:5213–5216

    Article  Google Scholar 

  • Turner AW (1949) Bacterial oxidation of arsenic. Nature 164:76–77

    Article  CAS  PubMed  Google Scholar 

  • Uddin A, Lundbeg N (1999) A paleo-Brahmaputra? Subsurface lithofacies analysis of Miocene deltaic sediments in the Himalayan-Bengal system, Bangladesh. Sediment Geol 123:239–254

    Article  Google Scholar 

  • Umitsu M (1993) Late quaternary sedimentary environments and landforms in the Ganges Delta. Sediment Geol 83:177–186

    Article  Google Scholar 

  • van den Hoven RN, Santini JM (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. BBA-Bioenergetics 1656:148–155

    Article  Google Scholar 

  • von Brömssen M, Jakariya M, Bhattacharya P, Ahmed KM, Hasan MA, Sracek O et al (2007) Targeting low-arsenic aquifers in Matlab Upazila, southeastern Bangladesh. Sci Total Environ 379:121–132

    Article  Google Scholar 

  • Warren GP, Alloway BJ, Lepp NW, Singh B, Bochereau FJM, Penny C (2003) Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci Total Environ 311:19–33

    Article  CAS  PubMed  Google Scholar 

  • Whaley-Martin KJ, Mailloux BJ, van Geen A, Bostick BC, Silvern RF, Kim C, Ahmed KM, Choudhury I, Slater GF (2016) Stimulation of Microbially mediated arsenic release in Bangladesh aquifers by young carbon indicated by radiocarbon analysis of sedimentary bacterial lipids. Environ Sci Technol 50:7353–7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, p 564

    Google Scholar 

  • Yoshinaga M, Cai M, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbiol 13:1205–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, van Geen A, Stute M, Dhar R, Mo Z, Cheng Z et al (2005) Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sources. Geochim Cosmochim Acta 69:5203–5218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punyasloke Bhadury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, D., Bhadury, P. (2018). Microbial Cycling of Arsenic in the Aquifers of Bengal Delta Plains (BDP). In: Adhya, T., Lal, B., Mohapatra, B., Paul, D., Das, S. (eds) Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-6178-3_5

Download citation

Publish with us

Policies and ethics