Skip to main content

Dynamic Analysis of Closed-Loop Forging System

  • Chapter
  • First Online:
Modeling, Analysis and Control of Hydraulic Actuator for Forging
  • 594 Accesses

Abstract

The previous chapter mainly considers the dynamic analysis of the open-loop forging system. This chapter will develop an approach to estimate the dynamic behavior of the closed-loop forging system. The model of the closed-loop forging system is first derived and a solving method is then developed in order to find the velocity expression of the closed-loop forging system. Using this velocity expression, the dynamics of the closed-loop forging system is further estimated and the conditions of stability, vibration, and creep, as well as the relationships between the controller parameters and the constraints are also derived. These derived dynamic characteristics, conditions and relationships for different workpieces are further integrated and used to design the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Shen, D. Furrer, Manufacturing of aerospace forgings. J. Mater. Process. Technol. 98(2), 189–195 (2000)

    Article  Google Scholar 

  2. Y. Zhang, D. Shan, F. Xu, Flow lines control of disk structure with complex shape in isothermal precision forging. J. Mater. Process. Technol. 209(2), 745–753 (2009)

    Article  Google Scholar 

  3. D.W. Zhang, H. Yang, Z.C. Sun, Deformation behavior of variable-thickness region of billet in rib-web component isothermal local loading process. Int. J. Adv. Manufact. Technol. 63(1–4), 1–12 (2013)

    Article  Google Scholar 

  4. H. Chen, Effect of forging process parameters on re-crystallization behavior of 7050 aluminum alloy. Alum. Fabrication 3(2), 33–35 (2007)

    Google Scholar 

  5. X. Liang, K.H. Chen, X.H. Chen, Effect of isothermal forging rate on microstructure and properties of 7085 aluminum alloy. Mater. Sci. Engin. Powder Metall. 16(2), 290–295 (2011)

    Google Scholar 

  6. X.J. Lu, M.H. Huang, Two-level modeling based intelligent integration control for time-varying forging processes. Ind. Eng. Chem. Res. 54, 5690–5696 (2015)

    Article  Google Scholar 

  7. X.J. Lu, M.H. Huang, A novel multi-level modeling method for complex forging processes on hydraulic press machines. Int. J. Adv. Manuf. Technol. 79(9), 1869–1880 (2015)

    Article  Google Scholar 

  8. X.J. Lu, M.H. Huang, A simple online modeling approach for a time-varying forging process. Int. J. Adv. Manuf. Technol. 75(5-8), 1197–1205 (2014)

    Article  Google Scholar 

  9. X.J. Lu, M.H. Huang, System decomposition based multi-level control for hydraulic press machine. IEEE Trans. Ind. Electron. 59(4), 1980–1987 (2012)

    Article  Google Scholar 

  10. J. Beddoes, M.J. Bibbly, Principles of metal manufacturing process (Elsevier Butterworth-Heinemann, Burlington, 2014)

    Google Scholar 

  11. Z.P. Lin, Engineering computation of deformation force under forging (Mechanical Industry Press, 1986)

    Google Scholar 

  12. X.J. Lu, W. Zou, M.H. Huang, K. Deng, A process/shape-decomposition modeling method for deformation force estimation in complex forging processes. Int. J. Mech. Sci. 90, 190–199 (2015)

    Article  Google Scholar 

  13. W.S. Owen, E.A. Croft, The reduction of stick-slip friction in hydraulic actuators. IEEE/ASME Trans. Mechatron. 8(3), 362–371 (2003)

    Article  Google Scholar 

  14. C.J. Lin, H.T. Yau, Y.C. Tian, Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage. IEEE/ASME Trans. Mechatron. 18(4), 1385–1396 (2013)

    Article  Google Scholar 

  15. T.H. Lee, K.K. Tan, S. Huang, Adaptive friction compensation with a dynamical friction model. IEEE/ASME Trans. Mechatron. 16(1), 133–140 (2011)

    Article  Google Scholar 

  16. L. Márton, S. Fodor, N. Sepehri, A practical method for friction identification in hydraulic actuators. Mechatronics 21(1), 350–356 (2011)

    Article  Google Scholar 

  17. A.C. Bittencourt, P. Axelsson, Modeling and experiment design for identification of wear in a robot joint under load and temperature uncertainties based on friction data. IEEE/ASME Trans. Mechatron. 19(5), 1694–1706 (2014)

    Article  Google Scholar 

  18. M. Boegli, T.D. Laet, J. De Schutter, J. Swevers, A smoothed GMS friction model suited for gradient-based friction state and parameter estimation. IEEE/ASME Trans. Mechatron. 19(5), 1593–1602 (2014)

    Article  Google Scholar 

  19. L. Mostefai, M. Denaï, Y. Hori, Robust tracking controller design with uncertain friction compensation based on a local modeling approach. IEEE/ASME Trans. Mechatron. 15(5), 746–756 (2010)

    Article  Google Scholar 

  20. L. Topliceanu, L. Bibire, A.S. Ghenadi, Particular aspects on the dynamics of hydraulic driven robot with spherical joints. Appl. Mech. Mater. 332, 254–259 (2013)

    Article  Google Scholar 

  21. H. Yanada, Y. Sekikawa, Modeling of dynamic behaviors of friction. Mechatronics 18(7), 330–339 (2008)

    Article  Google Scholar 

  22. L.H. Wang, Research on nonlinear dynamic characteristics identification of NC Table, Ph.D. Dissertation, Huazhong University of Science & Technology, 2009

    Google Scholar 

  23. N. Sepehri, Simulation and experimental studies of gear backlash and stick-slip friction in hydraulic excavator swing motion. J. Dyn. Syst. Meas. Contr. 118(3), 99–101 (1996)

    Article  MATH  Google Scholar 

  24. B. Feeny, F.C. Moon, Chaos in a forced dry-friction oscillator: experiments and numerical modeling. J. Sound Vib. 170(3), 303–323 (1994)

    Article  MATH  Google Scholar 

  25. Y. Zhu, W.L. Jiang, X.D. Kong, Z. Zheng, Study on nonlinear dynamics characteristics of electrohydraulic servo system. Nonlinear Dyn. 80(1-2), 723–737 (2015)

    Article  Google Scholar 

  26. L.H. Wang, B. Wu, R.S. Du, Nonlinear dynamic characteristics of moving hydraulic cylinder. Chin. J. Mech. Eng. 43(12), 13–19 (2007)

    Article  Google Scholar 

  27. R. Scheidl, B. Manhartsgruber, On the dynamic behavior of servo-hydraulic drives. Nonlinear Dyn. 17(3), 247–268 (1998)

    Article  MATH  Google Scholar 

  28. K.U. Yang, J.G. Hur, G.J. Kim, Non-linear modeling and dynamic analysis of hydraulic control valve; effect of a decision factor between experiment and numerical simulation. Nonlinear Dyn. 69(4), 2135–2146 (2012)

    Article  Google Scholar 

  29. Y. Ye, C.B. Yin, Y. Gong, J.J. Zhou, Position control of nonlinear hydraulic system using an improved PSO based PID controller. Mech. Syst. Signal Process. 83, 241–259 (2017)

    Article  Google Scholar 

  30. J. Woodacre, Model-predictive control of a hydraulic active heave compensation system with heave prediction, Master Dissertation, 2015

    Google Scholar 

  31. L.H. Lai, F. Liu, The electro-hydraulic synchronization position servo system based on nonlinear and non-gaussian time sequence prediction model. Appl. Mech. Mater. 472, 306–311 (2014)

    Article  Google Scholar 

  32. Q. Guo, T. Yu, D. Jiang, Robust H∞ positional control of 2-DOF robotic arm driven by electro-hydraulic servo system. ISA Trans. 59, 55–64 (2015)

    Article  Google Scholar 

  33. Y.J. Deng, Z.W. Liu, Research of H∞ robust control for the giant die forging hydraulic press’s synchronous control system under the uncertainty coefficient. Appl. Mech. Mater. 190–191, 819–824 (2012)

    Article  Google Scholar 

  34. Y.L. Wu, S.C. Li, Vibration of hydraulic machinery. Mech. Mach Sci 11(360), 211–242 (2013)

    Google Scholar 

  35. J.J. Thomsen, Vibrations and Stability (Springer, Berlin, vol7, no.3, 2003), pp. xxi–404

    Google Scholar 

  36. Y.L. Qian, G. Ou, A. Maghareh, S.J. Dyke, Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation. Mech. Syst. Signal Process. 48(1-2), 260–273 (2014)

    Article  Google Scholar 

  37. F. Meng, P. Shi, H.R. Karimi, H. Zhang, Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints. Mech. Syst. Signal Process. 68–69, 491–503 (2016)

    Article  Google Scholar 

  38. A.E. Balau, C.F. Caruntu, C. Lazar, Simulation and control of an electro-hydraulic actuated clutch. Mech. Syst. Signal Process. 25(6), 1911–1922 (2011)

    Article  Google Scholar 

  39. S. Çetin, A.V. Akkaya, Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system. Nonlinear Dyn. 61(3), 465–476 (2010)

    Article  MATH  Google Scholar 

  40. L. Kasprzyczak, E. Macha, Selection of settings of the PID controller by automatic tuning at the control system of the hydraulic fatigue stand. Mech. Syst. Signal Process. 22(6), 1274–1288 (2008)

    Article  Google Scholar 

  41. S. Strano, M. Terzo, A SDRE-based tracking control for a hydraulic actuation system. Mech. Syst. Signal Process. 60–61, 715–726 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Appendices

Appendix A

$$\begin{aligned} & w_{10}^{2} = \frac{1}{2}\left( {w_{1}^{2} + w_{2}^{2} + \sqrt {(w_{1}^{2} - w_{2}^{2} )^{2} + 4m_{4} n_{6} } } \right),w_{20}^{2} = \frac{1}{2}\left( {w_{1}^{2} + w_{2}^{2} - \sqrt {(w_{1}^{2} - w_{2}^{2} )^{2} + 4m_{4} n_{6} } } \right), \\ \mu_{2} = \frac{{w_{1}^{2} - w_{2}^{2} \sqrt {(w_{1}^{2} - w_{2}^{2} )^{2} + 4m_{4} n_{6} } }}{{2m_{4} }}, \\ & \mu_{3} = \frac{{w_{1}^{2} - w_{2}^{2} - \sqrt {(w_{1}^{2} - w_{2}^{2} )^{2} + 4m_{4} n_{6} } }}{{2m_{4} }},M_{1} = 1 + \mu_{2}^{2} ,M_{2} = 1 + \mu_{3}^{2}, \\ = H \frac{{\varepsilon (m_{1} + \mu_{2} n_{1} + \mu_{2}^{2} n_{5} )}}{{2M_{1} }} + \frac{{\varepsilon^{2} (m_{2} + \mu_{2} n_{2} )}}{{2M_{1} }}(\frac{{\mu_{2} n_{4} }}{{M_{1} w_{10}^{2} }} + \frac{{\mu_{3} n_{4} }}{{M_{2} w_{20}^{2} }}), \\ & Z = \frac{{\varepsilon (m_{3} + \mu_{2} n_{3} )}}{{8M_{1} }}, A_{0} = \varepsilon n_{4} (\frac{{\mu_{2} }}{{M_{1} w_{10}^{2} }} + \frac{{\mu_{3} }}{{M_{2} W_{20}^{2} }}),\\ E = w_{10} - \frac{{M_{1} A_{{{\kern 1pt} 11}}^{2} + \varepsilon^{2} (m_{1} + \mu_{2} n_{1} + \mu_{2} \mu_{3} n_{5} )B_{0}^{(1)} w_{10} }}{{2w_{10} M_{1} }}, A_{12} = \frac{{\varepsilon (m_{3} + \mu_{2} n_{3} )}}{{8M_{1} }} \\ & B_{0}^{(1)} = - \frac{{w_{10} (m_{1} + \mu_{3} n_{1} + \mu_{2} \mu_{3} n_{5} )}}{{M_{2} (w_{20}^{2} - w_{10}^{2} )}} \\ & B_{0}^{(2)} = - \frac{{w_{10} (m_{3} + \mu_{3} n_{3} )}}{{4M_{2} (w_{20}^{2} - w_{10}^{2} )}}, A_{11} \frac{{\varepsilon (m_{1} + \mu_{2} n_{1} + \mu_{2}^{2} n_{5} )}}{{2M_{1} }}, B_{0} = \varepsilon (B_{0}^{(1)} + B_{0}^{(2)} a^{2} ), \\ C_{0} = \frac{{\varepsilon (m_{2} + \mu_{2} n_{2} )}}{{6M_{1} w_{10} }} - \frac{{\varepsilon w_{10} (m_{2} + \mu_{3} n_{2} )}}{{2M_{2} (w_{20}^{2} - 4w_{10}^{2} )}}, \\ & F = - \frac{{3M_{1} A_{11} A_{12} }}{{w_{10} M_{1} }} - \frac{{\varepsilon C_{0} (m_{2} + \mu_{2} n_{2} )}}{{4M_{1} }} - \frac{{\varepsilon^{2} (m_{1} + \mu_{2} n_{1} + \mu_{2} \mu_{3} n_{5} )B_{0}^{(2)} }}{{2M_{1} }} - \varepsilon A_{12} B_{0}^{(1)} , \\ & G = - \frac{{3A_{12}^{2} + 2A_{12} D_{0} w_{10} + 2\varepsilon A_{12} B_{0}^{(2)} w_{10} }}{{2w_{10} }}, D_{0} = \frac{{\varepsilon (m_{3} + \mu_{2} n_{3} )}}{{32M_{1} w_{10} }} - \frac{{\varepsilon w_{10} (m_{2} + \mu_{3} n_{3} )}}{{4M_{2} (w_{20}^{2} - 9w_{10}^{2} )}}, \\ C_{1} \,{\text{is}}\,{\text{constant}} \\ \end{aligned}$$

Appendix B

The quantization [E(k), EC(k)] of [e(k), ec(k)] is divided into seven fuzzy rules according to e(k) and ec(k), as shown in Table 9.4. The adaptive increments \(\Delta k_{p}\), \(\Delta k_{i}\), and \(\Delta k_{d}\) are calculated as follows

Table 9.4 Fuzzy rule
$$\Delta k_{p} (k) = 0.1T_{kp} [E(k),EC(k)],\quad \Delta k_{i} (k) = T_{ki} [E(k),EC(k)],\Delta k_{d} (k) = T_{kd} [E(k),EC(k)] \times 10^{ - 6}$$

Here, \(T_{kp} [E(k),EC(k)],T_{ki} [E(k),EC(k)]\), and \(T_{kd} [E(k),EC(k)]\) are obtained using look-up Tables 9.5, 9.6, and 9.7 respectively.

Table 9.5 \(T_{kp} [E(k),EC(k)]\)
Table 9.6 \(T_{ki} [E(k),EC(k)]\)
Table 9.7 \(T_{kd} [E(k),EC(k)]\)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). Dynamic Analysis of Closed-Loop Forging System. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics