Skip to main content
Log in

Novel multi-level modeling method for complex forging processes on hydraulic press machines

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A multi-level modeling method is proposed for complex forging processes on hydraulic press machines (HPMs). This method integrates the microstructure model of a forging into the motion model of the HPM such that the model built can effectively reflect the whole forging process. In order to ease this modeling, the method then divides the complex forging process into many sub-processes, where each sub-process has simpler dynamic behavior than the original process, rendering modeling and experimentation easier. The method also incorporates only some of the unknown parameters. Thus, parameter identification of each sub-process is easier and simpler than in the original process. Moreover, the deformation force model of a forging is derived and its unknown parameters are identified online using the input and output data of the HPM. This renders the deformation process of a forging capable of real-time prediction and control. Both numerical simulation and experiments demonstrate and test the effectiveness of the proposed modeling method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu PH, Zhang LH, Zhou R, Chen LH, Yu B, Xie QZ (2012) A novel sensitivity analysis method in structural performance of hydraulic press. Math Probl Eng 2012:1–21

    Google Scholar 

  2. Shen G, Furrer D (2000) Manufacturing of aerospace forgings. J Mater Process Technol 98:189–195

    Article  Google Scholar 

  3. Lu XJ, Huang MH (2013) Multi-domain modeling based robust design for nonlinear manufacture system. Int J Mech Sci 75:80–86

    Article  Google Scholar 

  4. Zheng JM, Zhao SD, Wei SG (2009) Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Eng Pract 17(12):1398–1404

    Article  Google Scholar 

  5. Lu XJ, Huang MH (2012) System decomposition based multi-level control for hydraulic press machine. IEEE Trans Ind Electron 59(4):1980–1987

    Article  MathSciNet  Google Scholar 

  6. Lu XJ, Huang MH (2014) A simple online modeling approach for a time-varying forging process. Int J Adv Manuf Technol 75:1197–1205

    Article  Google Scholar 

  7. Beddoes J, Bibbly MJ (1999) Principles of metal manufacturing process. Arnold

  8. Lin ZP (1986) Engineering computation of deformation force under forging. Mechanical Industry Press

  9. Huh H, Choi TH (1999) Modified membrane finite element formulation for sheet metal forming analysis of planar anisotropic materials. Int J Mech Sci 42:1623–1643

    Article  Google Scholar 

  10. Zabaras N, Ganapathysubramanian S, Li Q (2003) A continuum sensitivity method for the design of multi-stage metal forming processes. Int J Mech Sci 45:325–358

    Article  MATH  Google Scholar 

  11. Mori K, Yoshimura H (2000) Three-dimensional rigid-plastic finite element method using diagonal matrix for large-scale simulation of metal-forming processes. Int J Mech Sci 42:1821–1834

    Article  MATH  Google Scholar 

  12. Nguyen TH, Giraud-Audine C, Lemaire-Semail B, Abba G, Bigot R (2014) Modeling of forging processes assisted by piezoelectric actuators: principles and experimental validation. IEEE Trans Ind Appl 50(1):244–252

    Article  Google Scholar 

  13. Berg JM, Grath FW, Chaudhary A, Banda SS (1998) Optimal open-loop ram velocity profiles for isothermal variational approach. J Manuf Sci Eng 120(4):774–780

    Article  Google Scholar 

  14. Zhang Y, Jiang S, Zhao Y, Shan D (2014) Isothermal precision forging of aluminum alloy ring seats with different preforms using FEM and experimental investigation. Int J Adv Manuf Technol 72:1693–1703

    Article  Google Scholar 

  15. Sheu J-J, Yu C-H (2009) Preform and forging process designs based on geometrical features using 2D and 3D FEM simulations. Int J Adv Manuf Technol 44:244–254

    Article  Google Scholar 

  16. Kumaran S, Bergadab JM (2013) The effect of piston grooves performance in an axial piston pumps via CFD analysis. Int J Mech Sci 66:168–179

    Article  Google Scholar 

  17. Wei QS, Xue PJ, Liu GC, Lu H, Huang J, Shi YS (2014) Simulation and verification of near-net shaping a complex-shaped turbine disc by hot isostatic pressing process. Int J Adv Manuf Technol 74(9–12):1667–1677

    Article  MATH  Google Scholar 

  18. Zhang DW, Yang H (2013) Numerical study of the friction effects on the metal flow under local loading way. Int J Adv Manuf Technol 68(5–8):1339–1350

    Article  Google Scholar 

  19. Lu XJ, Zou W, Huang MH, Deng K (2015) A process/shape-decomposition modeling method for deformation force estimation in complex forging processes. Int J Mech Sci 90:190–199

    Article  Google Scholar 

  20. Piatkowski T (2014) Dahl and LuGre dynamic friction models—the analysis of selected properties. Mech Mach Theory 73:91–100

    Article  Google Scholar 

  21. Lin C-J, Yau H-T, Tian Y-C (2013) Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage. IEEE/ASME Trans Mechatron 18(4):1385–1396

    Article  Google Scholar 

  22. Sun M, Wang Z, Wang Y, Chen Z (2013) On low-velocity compensation of brushless DC servo in the absence of friction model. IEEE Trans Ind Electron 60(9):3897–3905

    Article  Google Scholar 

  23. Márton L, Fodor S, Sepehri N (2011) A practical method for friction identification in hydraulic actuators. Mechatronics 21(1):350–356

    Article  Google Scholar 

  24. Sadeghieh A, Sazgar H, Goodarzi K, Lucas C (2012) Identification and real-time position control of a servo-hydraulic rotary actuator by means of a neurobiologically motivated algorithm. ISA Trans 51(1):208–219

    Article  MATH  Google Scholar 

  25. Yousefi H, Handroos H, Soleymani A (2008) Application of differential evolution in system identification of a servo-hydraulic system with a flexible load. Mechatronics 18(9):513–528

    Article  MATH  Google Scholar 

  26. Li Y, Liu Y, Liu XP, Peng ZY (2004) Parameter identification and vibration control in modular manipulators. IEEE/ASME Trans Mechatron 9(4):700–705

    Article  Google Scholar 

  27. Lu XJ, Li YB, Huang MH (2013) Operation-region-decomposition-based SVD/NN modeling method for complex hydraulic press machines. Ind Eng Chem Res 52:17221–17228

    Article  Google Scholar 

  28. Wu C-Y, Hsu Y-C (2002) Optimal shape design of an extrusion–forging die using a polynomial network and a genetic algorithm. Int J Adv Manuf Technol 20:128–137

    Article  Google Scholar 

  29. Mokhtar MOA, Younes YK, Mahdy THEL, Attia NA (1998) A theoretical and experimental study on the dynamics of sliding bodies with dry conformal contacts. Wear 218:172–178

    Article  Google Scholar 

  30. Clerc M (2006) Particle swarm optimization. Newport Beach, London

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinJiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Huang, M. Novel multi-level modeling method for complex forging processes on hydraulic press machines. Int J Adv Manuf Technol 79, 1869–1880 (2015). https://doi.org/10.1007/s00170-015-6970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-6970-0

Keywords

Navigation