Skip to main content

Intelligent Integration Control for Time-Varying Forging Processes

  • Chapter
  • First Online:
Modeling, Analysis and Control of Hydraulic Actuator for Forging
  • 603 Accesses

Abstract

Time-varying forging process, big uncertainties and sudden changes from deformation force or driving force bring a great challenge to the high-quality forging control. In this chapter, a two-level modeling based intelligent integration control approach is proposed to meet this challenge. A two-level modeling method is first developed to take the time-varying forging process and the unpredictable sudden changes into account. An intelligent integration control method is then proposed to ensure the continuity and smoothness between the multiple localized nonlinear dynamics even if the forging processes have big uncertainties and sudden changes. The effectiveness of the proposed method is verified by both numerical simulations and experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.-H. Zhu, L. Zhang, R. Zhou, L. Chen, B. Yu, Q. Xie, A novel sensitivity analysis method in structural performance of hydraulic press. Math. Probl. Eng. 2012(2-4), 1101–1114 (2012)

    MATH  Google Scholar 

  2. X.J. Lu, M.H. Huang, System decomposition based multi-level control for hydraulic press machine. IEEE Trans. Ind. Electron. 59(4), 1980–1987 (2012)

    Article  Google Scholar 

  3. G. Shen, D. Furrer, Manufacturing of aerospace forgings. J. Mater. Process. Technol. 98(2), 189–195 (2000)

    Article  Google Scholar 

  4. J. Beddoes, M.J. Bibbly, Principles of Metal Manufacturing Process (Elsevier Butterworth-Heinemann, Burlington, 2014)

    Google Scholar 

  5. Z.P. Lin, in Engineering Computation of Deformation Force Under Forging, (Mechanical Industry Press, 1986)

    Google Scholar 

  6. O. Pantalé, B. Gueye, Influence of the constitutive flow law in FEM simulation of the radial forging process. J. Eng. 2013(1–3), 1845–1858 (2013)

    Google Scholar 

  7. J. Chen, K. Chandrashekhara, V.L. Richards, S.N. Lekakh, Three-dimensional nonlinear finite element analysis of hot radial forging process for large diameter tubes. Mater. Manuf. Process. 25(7), 669–678 (2010)

    Article  Google Scholar 

  8. J.M. Berg, F.W. Grath, A. Chaudhary, S.S. Banda, Optimal open-loop ram velocity profiles for isothermal variational approach. Am. Control Conf. 1(4), 774–780 (1998)

    Google Scholar 

  9. X.J. Lu, Y.B. Li, M.H. Huang, Operation-region-decomposition-based SVD/NN modeling method for complex hydraulic press machines. Ind. Eng. Chem. Res. 52(48), 17221–17228 (2013)

    Article  Google Scholar 

  10. S.R. Pandian, F. Takemura, Y. Hayakawa, S. Kawamura, Pressure observer-controller design for pneumatic cylinder actuators. IEEE/ASME Trans. Mechatron. 7(4), 490–499 (2002)

    Article  Google Scholar 

  11. J.M. Zheng, S.D. Zhao, S.G. Wei, Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Eng. Pract. 17(12), 1398–1404 (2009)

    Article  Google Scholar 

  12. S.J. Cho, J.C. Lee, Y.H. Jeon, J.W. Jeon, in The Development of a Position Conversion Controller for Hydraulic Press Systems. International Conference on Robotics and Biomimetics (2009), pp. 2019–2022

    Google Scholar 

  13. M. Chen, M.H. Huang, Y.C. Zhou, L.H. Zhan, Synchronism control system of heavy hydraulic press. IEEE Int. Conf. Measuring Technol. Mechatron. Autom. 2, 17–19 (2009)

    Article  Google Scholar 

  14. Y.C., Zhou, S.J. Liu, Z.W. Liu, M.H. Huang, Hydraulic position holding system of a huge water press based on iterative learning control. Mech. Sci Technol. Aerosp. Eng. 27(9), 1130–1133 (2008)

    Google Scholar 

  15. F.J. Villegas, R.L. Hecker, M.E. Pena, D.A. Vicente, G.M. Flores, Modeling of a linear motor feed drive including pre-rolling friction and aperiodic cogging and ripple. Int. J. Adv. Manuf. Technol. 73(1-4), 267–277 (2014)

    Article  Google Scholar 

  16. L. Márton, S. Fodor, N. Sepehri, A practical method for friction identification in hydraulic actuators. Mechatronics 21(1), 350–356 (2011)

    Article  Google Scholar 

  17. P.V. Overschee, B.D. Moor, Subspace identification for linear systems: theory, implementation, applications (Kluwer Academic Publishers, Boston, 1996), pp. 57–93

    Google Scholar 

  18. H.J. Palanthandalam-Madapusi, S. Lacy, J.B. Hoagg, D.S. Bernstein, Subspace-based identification for linear and nonlinear systems. Am. Control Conf. 4, 2320–2334 (2005)

    Google Scholar 

  19. N.D. Pour, B. Huang, S.L. Shah, Subspace approach to identification of step-response model from closed-loop data. Ind. Eng. Chem. Res. 49(18), 8558–8567 (2010)

    Article  Google Scholar 

  20. X.J. Lu, M.H. Huang, Y.B. Li, M. Chen, Subspace modeling based nonlinear measurement for process design. Ind. Eng. Chem. Res. 50(23), 13457–13465 (2011)

    Article  Google Scholar 

  21. J. Chen, Y.H. Lin, Multibatch model predictive control for repetitive batch operation with input-output linearization. Ind. Eng. Chem. Res. 51(28), 9598–9608 (2012)

    Article  Google Scholar 

  22. S. Hajimolana, M.A. Hussain, M. Soroush, W.A.W. Daud, M.H. Chakrabarti, Multilinear-model predictive control of a tubular solid oxide fuel cell system. Ind. Eng. Chem. Res. 52(1), 430–441 (2013)

    Google Scholar 

  23. K.J. Åström, T. Hägglund, Revisiting the Ziegler-Nichols step response method for PID control. J. Process Control 14(6), 635–650 (2004)

    Article  Google Scholar 

  24. T.A. Salvador, J.G. Arturo, Control of dividing-wall columns via fuzzy logic. Ind. Eng. Chem. Res. 52(22), 7492–7503 (2013)

    Article  Google Scholar 

  25. C. Deng, S.Q. Xie, J. Wu, X.Y. Shao, Position error compensation of semi-closed loop servo system using support vector regression and fuzzy PID control. Int. J. Adv. Manuf. Technol. 71, 887–898 (2014)

    Article  Google Scholar 

  26. X. Yao, Y. Zhang, B. Li, Z. Zhang, X. Shen, Machining force control with intelligent compensation. Int. J. Adv. Manuf. Technol. 69(5-8), 1701–1715 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). Intelligent Integration Control for Time-Varying Forging Processes. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics