Skip to main content
Log in

Machining force control with intelligent compensation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Force control is an effective means of improving the quality and efficiency of machining operations, so various approaches for force control have been proposed. However, due to the nonlinear, time-varying and uncertain characteristics of machining processes, it is difficult to develop force control systems that are stable and robust over the full range of operating conditions. This study proposed two control schemes to address such difficulties in the field of nonlinear force control by using a linear feedback proportional-derivate (PD) controller respectively with two different nonlinear intelligent compensators: fuzzy logic compensator (FLC) and neural network compensator (NNC). The PD controller is used to improve the transient response while maintaining the stability of the process system, and the FLC or NNC is employed to eliminate the steady-state error and compensate for the system nonlinearity (or uncertainty). The applications of the proposed schemes in machining processes show that the controllers adapt well to nonlinearity under time-varying cutting conditions in comparison to PID, PD, and FLC. The online updating of the NNC parameters through the Feedback-Error Learning can further improve the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratava J, Rikkonen M, Ryynänen V, Leppänen J, Lindh T, Varis J, Sihvo I (2011) An adaptive fuzzy control system to maximize rough turning productivity and avoid the onset of instability. Int J Adv Manuf Technol 53:71–79

    Article  Google Scholar 

  2. Landers RG, Ulsoy AG, Ma Y-H (2004) A comparison of model-based machining force control approaches. Int J Mach Tools Manuf 44(7–8):733–748

    Article  Google Scholar 

  3. Yao X, Chang S (2004) Computer control of machining processes. China Machine Press, Beijing

    Google Scholar 

  4. Koren Y (1984) Computer control of manufacturing systems. McGraw-Hill, New York

    Google Scholar 

  5. Tomizuka M, Zhang S (1988) Modeling and conventional/adaptive PI control of a lathe cutting process. ASME J Dyn Sys Meas Control 110(4):350–354

    Article  Google Scholar 

  6. Liu Y, Cheng T, Zuo L (2001) Adaptive control constraint of machining processes. Int J Adv Manuf Technol 17(10):720–726

    Article  Google Scholar 

  7. Masory O, Koren Y (1980) Adaptive control system for turning. Annals of the CIRP 29(1):31–40

    Google Scholar 

  8. Daneshmend LK, Pak HA (1986) Model reference adaptive control of feed force in turning. ASME J Dyn Sys Meas Control 108(3):215–222

    Article  MATH  Google Scholar 

  9. Tomizuka M, Oh JH, Dornfeld DA (1983) Model reference adaptive control of milling process. Paper presented at the Proceedings of Control of Manufacturing Processes and Robotic Systems, New York

  10. Lauderbaugh LK, Ulsoy AG (1989) Model reference adaptive force control in milling. ASME J Eng Ind 3(1):13–21

    Article  Google Scholar 

  11. Elbestawi MA, Mohammed Y, Liu L (1990) Application of some parameter adaptive algorithm in machining. ASME J Dyn Sys Meas Control 112(4):611–617

    Article  Google Scholar 

  12. Altintas Y, Sassani F, Ordubadi F (1990) Design and analysis of adaptive controllers for milling process. Trans CSME 14(1–2):17–25

    Google Scholar 

  13. Hsu PL, Hsieh MY (1992) Applications of self tuning control on industrial cnc machines. Int J Mach Tools Manuf 34(6):859–877

    Google Scholar 

  14. Allen R, Huang K (1994) Self-tuning control of cutting force for rough turning operations. Proc Inst Mech Eng B J Eng Manuf 208:157–165

    Article  Google Scholar 

  15. Liu M, Liang SY (1989) Model reference adaptive control of nonminimum-phase milling. Modeling, sensing, and control of manufacturing processes. ASME, New York

    Google Scholar 

  16. Rober SJ, Shin YC (1996) Control of cutting force for end milling processes using an extended model reference adaptive control scheme. ASME J Manuf Sci Eng 118(3):339–347

    Article  Google Scholar 

  17. Astrom KJ, Wittenmark B (1980) Self tuning controller based on pole-zero placement. IEE Proceedings-D 127(3):120–130

    Article  Google Scholar 

  18. Kim K, Huang D (1992) Implementation of pole placement adaptive controller for force control of non-minimum phase end milling operations. Int J Mach Tools Manuf 32(4):619–627

    Article  MathSciNet  Google Scholar 

  19. Landers RG, Ulsoy AG (2000) Model-based machining force control. ASME J Dyn Sys Meas Control 122(3):521–527

    Article  Google Scholar 

  20. Xu C, Shin YC (2008) An adaptive fuzzy controller for constant cutting force in end-milling processes. ASME J Manuf Sci Eng 130 (3). doi:031001-1-10

    Google Scholar 

  21. Rober SJ, Shin YC, Nwokah ODI (1997) A Digital robust controller for cutting force control in the end milling process. ASME J Dyn Syst Meas Control 119(2):146–152

    Article  MATH  Google Scholar 

  22. Hayes PD, Shin YC, Nwokah ODI (1993) Robust control design for milling processes. ASME Winter Annual Meeting, New Orleans, pp 119–125

    Google Scholar 

  23. Landers RG, Ulsoy AG (2000) Model-based machining force control. ASME J Dyn Sys Meas Control 122(3):521–527

    Article  Google Scholar 

  24. Kim SI, Landers RG, Ulsoy AG (2003) Robust machining force control with process compensation. ASME J Manuf Sci Eng 125(3):423–430

    Article  Google Scholar 

  25. Zhu JY, Shumsheruddin AA, Bollinger JG (1982) Control of machine tools using the fuzzy control technique. Annals of CIRP 31(1):347–352

    Article  Google Scholar 

  26. Sakai Y, Ohkusa K (1985) A fuzzy controller in turning process automation. Industrial Applications of Fuzzy Control. Elsevier Science Publishers B. V, Amsterdam

    Google Scholar 

  27. Ralston PAS, Word TL, Lambert LM Simulation of fuzzy logic control of a lathe. In: Proceedings of the Symposium on Advanced Manufacturing, Lexington, Kentucky, 1988. pp 21–25

  28. Tarng YS, Wang YS (1993) Adaptive fuzzy control system for turning operations. Int J Mach Tools Manuf 33(6):761–771

    Article  Google Scholar 

  29. Tarng YS, Wang YS (1994) A new adaptive controller for constant turning force. Int J Adv Manuf Technol 9(4):211–216

    Article  Google Scholar 

  30. Fann WR, Hsu PL (1992) Fuzzy adaptive control of milling process. In: Proceedings of the IFAC Workshop on Intelligent Manufacturing Systems, Dearborn, MI, pp. 88–92

  31. Tarng YS, Cheng ST (1993) Fuzzy control of feed rate in end milling operation. Int J Mach Tools Manuf 33(4):643–650

    Article  Google Scholar 

  32. Kim MK, Cho MW, Kim K (1994) Application of the fuzzy control strategy to adaptive force control of non-minimum phase end milling operations. Int J Mach Tools Manuf 34(5):677–696

    Article  MathSciNet  Google Scholar 

  33. Yeh ZM, Tarng YS, Nian CY (1995) Self-organizing neural fuzzy logic controller for turning operations. Int J Mach Tools Manuf 35(10):1363–1374

    Article  Google Scholar 

  34. Hsu PL, Fann WR (1996) Fuzzy adaptive control of machining process with a self-learning algorithm. ASME J Manuf Sci Eng 118(4):522–529

    Article  Google Scholar 

  35. Huang S-J, Shy C-Y (1999) Fuzzy logic for constant force control of end milling. IEEE Trans Ind Electron 46(1):169–176

    Article  Google Scholar 

  36. Yao X (2003) Fuzzy-chip-based control and its application to adaptive machining. ASME J Dyn Sys Meas Control 125(1):74–79

    Article  Google Scholar 

  37. Jee S, Koren Y (2004) Adaptive fuzzy logic controller for feed drives of a CNC machine tool. Mechatronics 14(3):299–326

    Article  Google Scholar 

  38. Balazinski M, Czogala E, Sadowski T (1993) Modelling of neural controllers with application to the control of a machining process. Fuzzy Sets Syst 56(3):273–280

    Article  Google Scholar 

  39. Tarng YS, Hwang ST, Wang YS (1994) A neural network controller for constant turning force. Int J Mach Tools Manuf 34(4):453–460

    Article  Google Scholar 

  40. Huang SJ, Chiou KC (1996) The application of neural networks in self-tuning constant force control. Int J Mach Tools Manuf 36(1):17–31

    Article  Google Scholar 

  41. Control theory (2012) http://en.wikipedia.org/wiki/Control_theory. http://en.wikipedia.org/wiki/Control_theory. Accessed Mar. 2012

  42. Procky TJ, Mamdani EH (1979) A linguistic self-organizing process controller. Automatic 15(1):15–30

    Article  Google Scholar 

  43. Lian R-J, Lin B-F, Huang J-H (2005) Self-organizing fuzzy control of constant cutting force in turning. Int J Adv Manuf Technol 29(5):436–445

    Article  Google Scholar 

  44. Lin J, Lian R-J (2011) Hybrid self-organizing fuzzy and radial basis-function neural-network controller for constant cutting force in turning. Int J Adv Manuf Technol 53:921–933

    Article  Google Scholar 

  45. Kawato M, Uno Y, Isobe M, Suzuki R (1988) Hierarchical neural network model for voluntary movement with application to robotics. IEEE Contr Sys Mag 8(2):8–15

    Article  Google Scholar 

  46. Gomi H, Kawato M (1993) Neural network control for a closed-loop system using feedback-error learning. Neural Networks 6(7):933–946

    Article  Google Scholar 

  47. Nakanishi J, Schaal S (2004) Feedback error learning and nonlinear adaptive control. Neural Networks 17(10):1453–1465

    Article  MATH  Google Scholar 

  48. Yao X, Ge D, Lian Z A method to model nonlinear systems by neural networks. In: Proceedings of the Fourth International Conference on Innovative Computing, Information and Control, Kaohsiung, Taiwan, 2009, pp 148–151

  49. Yao X, Lian Z, Ge D, He Y (2011) Approaches to model and control nonlinear/uncertain systems by RBF neural networks. Int J Innov Comput, Info Cont 7(2):941–954

    Google Scholar 

  50. Miyamura A, Kimura H (2002) Stability of feedback error learning scheme. Syst Control Lett 45(4):303–316

    Article  MathSciNet  MATH  Google Scholar 

  51. Masory O (1984) Real-time estimation of cutting process parameters in turning. ASME J Eng Ind 106(3):218–221

    Article  Google Scholar 

  52. Masory O, Koren Y (1985) Stability of analysis of a constant force adaptive control system for turning. ASME J Eng Ind 107(4):295–299

    Article  Google Scholar 

  53. Chang YF, Chen BS (1988) The VSS controller design and implementation for the constant turning force adaptive control system. Int J Mach Tools Manuf 28(4):373–387

    Article  MathSciNet  Google Scholar 

  54. Lauderbaugh LK, Ulsoy AG (1988) Dynamic modeling for control of the milling process. ASME J Eng Ind 110(4):367–375

    Article  Google Scholar 

  55. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man, Cybern 15(1):116–132

    Article  MATH  Google Scholar 

  56. Jang J-SR, Sun C-T (1993) Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans Neural Networks 4(1):156–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifan Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, X., Zhang, Y., Li, B. et al. Machining force control with intelligent compensation. Int J Adv Manuf Technol 69, 1701–1715 (2013). https://doi.org/10.1007/s00170-013-5136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5136-1

Keywords

Navigation