Skip to main content
  • 601 Accesses

Abstract

This chapter is an introduction of the book. It briefly introduces the background, motivation and objective of the research, followed by a list of contributions and organization of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Altan, G. Ngaile, G. Shen, Cold and hot forgings: fundamentals and applications. ASM Int. (Vol. 1, 2005)

    Google Scholar 

  2. J. Zhai, Aircraft manufacturing development and isothermal forging technique for titanium alloy. Titanium Ind. Prog. 32(3), 1–6 (2015)

    Google Scholar 

  3. X.J. Lu, M.H. Huang, Two-level modeling based intelligent integration control for time-varying forging processes. Ind. Eng. Chem. Res. 54, 5690–5696 (2015)

    Article  Google Scholar 

  4. X.J. Lu, M.H. Huang, A novel multi-level modeling method for complex forging processes on hydraulic press machines. Int. J. Adv. Manuf. Technol. 79(9-12), 1869–1880 (2015)

    Article  Google Scholar 

  5. Y. Zhang, D. Shan, F. Xu, Flow lines control of disk structure with complex shape in isothermal precision forging. J. Mater. Process. Technol. 209(2), 745–753 (2009)

    Article  Google Scholar 

  6. D.W. Zhang, H. Yang, Z.C. Sun, Deformation behavior of variable-thickness region of billet in rib-web component isothermal local loading process. Int. J. Adv. Manuf. Technol. 63(1–4), 1–12 (2013)

    Article  Google Scholar 

  7. H. Chen, Effect of forging process parameters on re-crystallization behavior of 7050 aluminum alloy. Alum. Fabrication 3(2), 33–35 (2007)

    Google Scholar 

  8. X. Liang, K.H. Chen, X.H. Chen, Effect of isothermal forging rate on microstructure and properties of 7085 aluminum alloy. Mater. Sci. Eng. Powder Metall. 16(2), 290–295 (2011)

    Google Scholar 

  9. J. Beddoes, M.J. Bibbly, Principles of metal manufacturing process (Elsevier Butterworth-Heinemann, Burlington, 2014)

    Google Scholar 

  10. Z.P. Lin, Engineering Computation of Deformation Force Under Forging (Mechanical Industry Press, China, 1986)

    Google Scholar 

  11. I.A. Volkov, Y.G. Korotkikh, Modeling of processes of complex plastic deformation of materials along arbitrary temperature and force loading paths. Mech. Solids 42(6), 897–909 (2007)

    Article  Google Scholar 

  12. E. Ghassemali, M.J. Tan, C.B. Wah, S.C.V. Lim, A.E.W. Jarfors, Experimental and simulation of friction effects in an open-die microforging/extrusion process. J. Micro Nano-Manuf. 2(1), 011005-1–011005-12 (2014)

    Google Scholar 

  13. X.J. Lu, Y.B. Li, M.H. Huang, Operation-region-decomposition-based SVD/NN Modeling method for complex hydraulic press machines. Ind. Eng. Chem. Res. 52(48), 17221–17228 (2013)

    Article  Google Scholar 

  14. J. Chen, K. Chandrashekhara, V.L. Richards, S.N. Lekakh, Three-dimensional nonlinear finite element analysis of hot radial forging process for large diameter tubes. Mater. Manuf. Processes 25(7), 669–678 (2010)

    Article  Google Scholar 

  15. S. Kumaran, J.M. Bergadab, The effect of piston grooves performance in an axial piston pumps via CFD analysis. Int. J. Mech. Sci. 66(66), 168–179 (2013)

    Article  Google Scholar 

  16. L. Huang, H. Yang, M. Zhan, Y.L. Liu, Analysis of splitting spinning force by the principal stress method. J. Mater. Process. Technol. 201(1–3), 267–272 (2008)

    Article  Google Scholar 

  17. N. Fang, Machining with tool–chip contact on the tool secondary rake face-Part I: a new slip-line model. Int. J. Mech. Sci. 44(11), 2337–2354 (2002)

    Article  MATH  Google Scholar 

  18. N.R. Chitkara, M.A. Butt, Axisymmetric tube extrusion through a flat-faced circular die: numerical construction of slip-line fields and associated velocity fields. Int. J. Mech. Sci. 39(3), 341–366 (1997)

    Article  Google Scholar 

  19. A. Ghaei, A. Karimi Taheri, M.R. Movahhedy, A new upper bound solution for analysis of the radial forging process. Int. J. Mech. Sci. 48(11), 1264–1272 (2006)

    Article  MATH  Google Scholar 

  20. N.R. Chitkara, A. Aleem, Extrusion of axi-symmetric tubes from hollow and solid circular billets: a generalised slab method of analysis and some experiments. Int. J. Mech. Sci. 43(7), 1661–1684 (2001)

    Article  MATH  Google Scholar 

  21. S.H. Hsiang, S.L. Lin, Application of 3D FEM-slab method to shape rolling. Int. J. Mech. Sci. 43(5), 1155–1177 (2001)

    Article  MATH  Google Scholar 

  22. L. Huang, H. Yang, M. Zhan, Y.L. Liu, Analysis of splitting spinning force by the principal stress method. J. Mater. Process. Technol. 201(1), 267–272 (2008)

    Article  Google Scholar 

  23. X.M. Li, Q.X. Xia, W.L. Feng, The Slab Method and Its Application in the Spinning Forming. The second forging equipment and manufacturing technology, BBS panel processing technology seminar and product information communication conference paper assembly, 2005, pp. 96–103

    Google Scholar 

  24. S.H. Zhang, D.W. Zhao, C.R. Gao, Analysis of asymmetrical sheet rolling by slab method. Int. J. Mech. Sci. 65(1), 168–176 (2012)

    Article  Google Scholar 

  25. Y. Fu, S.S. Xie, B.Q. Xiong, Calculation of rolling force in snake rolling by slab method. J. Plast. Eng. 17(6), 103–109 (2010)

    Google Scholar 

  26. M.J. Jia, W. Jia, The new solution of the principal stress method of the axial symmetry is extruding deformation forces. Forging Stamping Technol. 3, 12–15 (1996)

    Google Scholar 

  27. W.S. Weroński, A. Gontarz, Z.B. Pater, Analysis of the drop forging of a piston using slip-line fields and FEM. Int. J. Mech. Sci. 39(2), 211–220 (1997)

    Article  Google Scholar 

  28. E. Sleeckx, J.P. Kruth, Review of flash design rules for closed-die forgings. J. Mater. Process. Technol. 31(1-2), 119–134 (1992)

    Article  Google Scholar 

  29. J.P. Wang, Y.T. Lin, The load analysis of plane-strain forging processes using the upper-bound stream-function elemental technique. J. Mater. Process. Technol. 47(3), 345–359 (1995)

    Article  Google Scholar 

  30. G. Samolyk, Z. Pater, Application of the slip-line field method to the analysis of die cavity filling. J. Mater. Process. Technol. 153–154(1), 729–735 (2004)

    Article  Google Scholar 

  31. W. Johnson, H. Kudo, The Mechanics of the Metal Extrusion (Manchester University Press, Manchester, 1962)

    Google Scholar 

  32. I.A. Khan, V. Bhasin, J. Chattopadhyay, On the equivalence of slip-line fields and work principles for rigid–plastic body in plane strain. Int. J. Solids Struct. 45(25), 6416–6435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. L.H. Zhao, F. Yang, Construction of improved rigid blocks failure mechanism for ultimate bearing capacity calculation based on slip-line field theory. J. Central South Univ. 20(4), 1047–1057 (2013)

    Article  Google Scholar 

  34. K. Komori, An upper bound method for analysis of three-dimensional deformation in the flat rolling of bars. Int. J. Mech. Sci. 44(1), 37–55 (2002)

    Article  MATH  Google Scholar 

  35. N.R. Chitkara, A. Aleem, Axisymmetric tube extrusion/piercing using die–mandrel combinations: some experiments and a generalised upper bound analysis. Int. J. Mech. Sci. 43(7), 1685–1709 (2001)

    Article  MATH  Google Scholar 

  36. W.C. Yeh, M.C. Wu, A variational upper-bound method for analysis of upset forging of rings. J. Mater. Process. Technol. 170(1), 392–402 (2005)

    Article  Google Scholar 

  37. C.J. Luis Pérez, R. Luri, Study of the ECAE process by the upper bound method considering the correct die design. Mech. Mater. 40(8), 617–628 (2008)

    Article  Google Scholar 

  38. J.M. Zheng, S.D. Zhao, S.G. Wei, Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Eng. Pract. 17(12), 1398–1404 (2009)

    Article  Google Scholar 

  39. J. Cruz, J.A. Ferreira, Testing and Evaluation of Control Strategies for a Prototype Hydraulic Press (ASME 2003 International Mechanical Engineering Congress & Exposition, 2003), pp. 195–202

    Google Scholar 

  40. G. Yang, J. Yu, W. Chen, J. Liu, J. Du, Analysis of hydraulic working pressure and arrangement of main working cylinder for large close-die forging press. Forging Stamping Technol. 36(3), 77–86 (2011)

    Google Scholar 

  41. M. Chen, M.H. Huang, Y.C. Zhou, L.H. Zhan, Synchronism control system of heavy hydraulic press. IEEE Int. Conf. Measuring Technol. Mechatron. Autom. 2, 17–19 (2009)

    Article  Google Scholar 

  42. G. Yang, Design status of independent design and innovation project of 800 MN heavy duty die hydraulic press in domestic heavy equipment industry. China Heavy Equip. 1, 5–7 (2015)

    Google Scholar 

  43. O.H. Souza, N. Barbieri, A.H.M. Santos, Study of hydraulic transients in hydropower plants through simulation of nonlinear model of penstock and hydraulic turbine model. IEEE Trans. Power Syst. 14(4), 1269–1272 (1999)

    Article  Google Scholar 

  44. N. Sepehri, Simulation and experimental studies of gear backlash and stick-slip friction in hydraulic excavator swing motion. J. Dyn. Syst. Meas. Control 118(3), 99–101 (1996)

    Article  MATH  Google Scholar 

  45. B. Feeny, F.C. Moon, Chaos in a Forced dry-friction oscillator: experiments and numerical modeling. J. Sound Vib. 170(3), 303–323 (1994)

    Article  MATH  Google Scholar 

  46. J. Lei, X.J. Lu, Y. Li, M.H. Huang, W. Zou, An approximate-model based estimation method for dynamic response of forging processes. Chin. J. Mech. Eng. 28(2), 1–6 (2015)

    Google Scholar 

  47. T. Piatkowski, Dahl and LuGre dynamic friction models—the analysis of selected properties. Mech. Mach. Theory 73(2), 91–100 (2014)

    Article  Google Scholar 

  48. C.J. Lin, H.T. Yau, Y.C. Tian, Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage. IEEE/ASME Trans. Mechatron. 18(4), 1385–1396 (2013)

    Article  Google Scholar 

  49. M. Sun, Z. Wang, Y. Wang, Z. Chen, On low-velocity compensation of brushless DC servo in the absence of friction model. IEEE Trans. Ind. Electron. 60(9), 3897–3905 (2013)

    Article  Google Scholar 

  50. S.J. Cho, J.C. Lee, Y.H. Jeon, J.W. Jeon, The Development of a Position Conversion Controller for Hydraulic Press Systems. International Conference on Robotics and Biomimetics, 2009, pp. 2019–2022

    Google Scholar 

  51. O. Pantalé, B. Gueye, Influence of the constitutive flow law in FEM simulation of the radial forging process. J. Eng. 2013(1–3), 1845–1858 (2013)

    Google Scholar 

  52. T. Soderstrom, P. Stoica, System Identification (Prentice Hall International, 1989)

    Google Scholar 

  53. P.V. Overschee, B.D. Moon, Subspace Identification for Linear Systems: Theory, Implementation, Applications (Kluwer Academic Publishers, Boston, 1996), pp. 57–93

    Google Scholar 

  54. S.L. Dai, C. Wang, F. Luo, Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inform. 8(4), 801–810 (2012)

    Article  Google Scholar 

  55. S.H. Jeon, K.K. Oh, J.Y. Choi, Flux observer with online tuning of stator and rotor resistances for induction motors. IEEE Trans. Ind. Electron. 49(3), 653–664 (2002)

    Article  Google Scholar 

  56. R. Lozano, X.H. Zhao, Adaptive pole placement without excitation probing signals. IEEE Trans. Autom. Control 39(1), 47–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  57. G. Marafioti, R. Bitmead, M. Hovd, Persistently exciting model predictive control using fir models. Int. J. Adapt. Control Signal Process. 45(6), 536–552 (2010)

    MATH  Google Scholar 

  58. F.X. Pang, Study on the United Simulation and Experiment of the Machine and Hydraulic System for 22MN Fast Forging Press (Yanshan University, Qinhuangdao, 2011)

    Google Scholar 

  59. K. Chen, Mechanical Electro-Hydraulic Co-simulation Based Forging Precision and Velocity Parameter Matching Technology and Application (Zhejiang University, Hangzhou, 2015)

    Google Scholar 

  60. Z. Meng, M. Huang, Dynamic Performance Simulation on Complex Hydraulic Press System. Second International Conference on Digital Manufacturing & Automation, IEEE Computer Society, 2011, pp. 465–468

    Google Scholar 

  61. Y. Li, B. Lei, Modeling and Simulation of Hydraulic System (Metallurgy Industry Press, 2003)

    Google Scholar 

  62. W. Liu, Research on Valve Controlling Asymmetric Cylinder Electrohydraulic Position Servo Control System. Master thesis, Beijing Jiaotong University, (2009)

    Google Scholar 

  63. M. Zahalka, Modal Analysis of Hydraulic Press Frames for Open Die Forging. Procedia Eng. 69(1), 1070–1075 (2014)

    Article  Google Scholar 

  64. D. Yi, S. J. Liu, Y. C. Zhou, Modal Analysis of Connection Structure for the Giant Forging Hydraulic Press Synchronization Balance Test System. International Conference on Intelligent System Design and Engineering Application, IEEE Computer Society (vol. 48–49, 2010), pp. 945–948

    Google Scholar 

  65. K. Raz, V. Kubec, M. Cechura, Dynamic behavior of the hydraulic press for free forging. Procedia Eng. 100, 885–890 (2015)

    Article  Google Scholar 

  66. H. Zhang, S. Liao, A. Wu, The Modal Analysis of 20 MN Forging Hydraulic Press. International Conference on Intelligent Computation Technology and Automation, IEEE, 2015, pp. 997–999

    Google Scholar 

  67. L. Zhang, S. Zhao, K. Liu, Simulation and parameter optimization of test platform hydraulic system based on mesohigh cylinder. J. Syst. Simul. 19(3), 671–674 (2007)

    Google Scholar 

  68. S. Wei, S. Zhao, L. Zhang, Dynamic simulation and optimization of hydraulic system for new directly driven pump controlling hydraulic press. J. Xian Jiaotong Univ. 43(7), 79–82 (2009)

    Google Scholar 

  69. K. Dasgupta, H. Murrenhoff, Modeling and dynamics of a servo-valve controlled hydraulic motor by bondgraph. Mech. Mach. Theory 46(7), 1016–1035 (2011)

    Article  MATH  Google Scholar 

  70. N.M. Tri, D.N.C. Nam, H.G. Park, Trajectory control of an electro hydraulic actuator using an iterative backstepping control scheme. Mechatronics 29, 96–102 (2014)

    Article  Google Scholar 

  71. H. Armstrong, Louvry, Brian, A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction (Information Systems and Data Analysis, Springer, Berlin, Heidelberg, 1994), pp. 340–349

    Google Scholar 

  72. C.C. De Wit, H. Olsson, K.J. Astrom, A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  73. J. Lei, X. Lu, Y. Li, Approximate-model based estimation method for dynamic response of forging processes. Chin. J. Mech. Eng. 28(3), 565–572 (2015)

    Article  Google Scholar 

  74. M.H. Huang, Y. Li, M. Zhang, Dynamic performance analysis for die forging press machine under extremely low speed. J. Central South Univ. Sci. Technol. 43(11), pp. 4259–4267 (2012)

    Google Scholar 

  75. Q. Pan, M. Huang, Y. Li, Modeling and analysis of dynamic characteristics for multi-cylinder hydraulic parallel drive system. J. Sichuan Univ. (Engineering Science Edition) 46(1), 193–199 (2014)

    Google Scholar 

  76. Q. Gao, M. Zhang, Vibration analysis and optimal design in hydraulic leveling system. Adv. Mater. Res. 566, 637–640 (2012)

    Article  Google Scholar 

  77. H.X. Chen, P.S.K. Chua, G.H. Lim, Dynamic vibration analysis of a swash-plate type water hydraulic motor. Mech. Mach. Theory 41(5), 487–504 (2006)

    Article  MATH  Google Scholar 

  78. M.O.A. Mokhtar, Y.K. Younes, T.H. EL Mahdy, N.A. Attia, A theoretical and experimental study on the dynamics of sliding bodies with dry conformal contacts. Wear 218(2), 172–178 (1998)

    Article  Google Scholar 

  79. M. Muraki, E. Kinbara, T. Konishi, A laboratory simulation for stick-slip phenomena on the hydraulic cylinder of a construction machine. Tribol. Int. 36(10), 739–744 (2003)

    Article  Google Scholar 

  80. G. Capone, V. D’Agostino, S.D. Valle, D. Guida, Influence of the variation between static and kinetic friction on stick-slip instability. Wear 161(1-2), 21–126 (1993)

    Article  Google Scholar 

  81. A. Shukla, D.F. Thompson, Bifurcation Stability of Servo-Hydraulic Systems. Proceedings of the IEEE American Control Conference (vol. 5, 2001), pp. 3943–3948

    Google Scholar 

  82. A. Shukla, D.F. Thompson, Control of Bifurcations in Multidimensional Parameter Space for Servo-Hydraulic Systems. Proceedings of the IEEE American Control Conference (vol. 6, 2002), pp. 4813–4818

    Google Scholar 

  83. G.G. Kremer, Enhanced robust stability analysis of large hydraulic control systems via a bifurcation-based procedure. J. Franklin Inst. 338(7), 781–809 (2001)

    Article  MATH  Google Scholar 

  84. G.G. Kremer, D.F. Thompson, Robust Stability of Nonlinear Hydraulic Servo Systems Using Closest Hopf Bifurcation Techniques. Proceedings of the IEEE American control conference (vol. 5, 1998), pp. 2912–2916

    Google Scholar 

  85. H. Ding, J. Zhao, Characteristic analysis of pump controlled motor speed servo in the hydraulic hoister. Int. J. Model. Ident. Control 19(1), 64–74 (2013)

    Article  Google Scholar 

  86. S. Li, J. Ruan, B. Meng, Dynamic Characteristics and Stability Analysis of Two-dimensional (2D) Electro-Hydraulic Proportional Directional Valve. ASME 2015 dynamic systems and control conference, american society of mechanical engineers, 2015, pp. V002T33A002–V002T33A002

    Google Scholar 

  87. B. Magyar, C. Hős, G. Stépán, Influence of control valve delay and dead zone on the stability of a simple hydraulic positioning system. Math. Probl. Eng. 2010(4), 157–230 (2010)

    MathSciNet  MATH  Google Scholar 

  88. D.L. Margolis, C. Hennings, Stability of hydraulic motion control systems. J. Dyn. Syst. Meas. Control 119(4), 605–613 (1997)

    Article  MATH  Google Scholar 

  89. L. Wang, W.J. Book, J.D. Huggins, A hydraulic circuit for single rod cylinders. J. Dyn. Syst. Meas. Control 134(1), 011019 (2012)

    Article  Google Scholar 

  90. A. Ghasempoor-Nobandgany, A measure of stability for mobile manipulators with application to heavy-duty hydraulic machines. J. Dyn. Syst. Meas. Control 20(3), 360–370 (1995)

    Google Scholar 

  91. K. Zarei-nia, N. Sepehri, Q. Wu, A Lyapunov controller for stable haptic manipulation of hydraulic actuators. Int. J. Robust Nonlinear Control 22(3), 241–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  92. P. Sekhavat, N. Sepehri, Q. Wu, Impact stabilizing controller for hydraulic actuators with friction: Theory and experiments. Control Eng. Pract. 14(12), 1423–1433 (2006)

    Article  Google Scholar 

  93. P. Sekhavat, N. Sepehri, C. Q. Wu, Overall Stability Analysis of Hydraulic Actuator’s Switching Contact Control Using the Concept of Lyapunov Exponents. IEEE international conference on robotics and automation. IEEE, 2005, pp. 550–556

    Google Scholar 

  94. H.Y. Han, J. Wang, Q.X. Huang, Analysis of unsymmetrical valve controlling unsymmetrical cylinder stability in hydraulic leveler. Nonlinear Dyn. 70(2), 1199–1203 (2012)

    Article  MathSciNet  Google Scholar 

  95. K. Guo, J. Wei, Q. Tian, Disturbance observer based position tracking of electro-hydraulic actuator. J. Central South Univ. 22(6), 2158–2165 (2015)

    Article  Google Scholar 

  96. H.Y. Han, H.Z. Li, J. Li, Analyzing Nonlinear system stability of a new hydraulic bilateral rolling shear. ISIJ Int. 56(10), 1789–1795 (2016)

    Article  Google Scholar 

  97. J. Wang, Q. Huang, G. An, Nonlinear stability research on the hydraulic system of double-side rolling shear. Rev. Sci. Instrum. 86(10), 105104 (2015)

    Article  Google Scholar 

  98. T.N. Jensen, R. Wisniewski, Global asymptotic stabilization of large-scale hydraulic networks using positive proportional controls. IEEE Trans. Control Syst. Technol. 22(6), 2417–2423 (2014)

    Article  Google Scholar 

  99. E. Richard, J.C. Vivalda, Mathematical analysis of stability and drift behavior of hydraulic cylinders driven by a servovalve. J. Dyn. Syst. Meas. Contr. 24(1), 206–213 (2002)

    Article  Google Scholar 

  100. Z. Retchkimaan, E. Rubio, Modeling And Stability Analysis of A Hydraulic System. IEEE international conference on systems, man, and cybernetics, IEEE Smc ’99 conference proceedings. IEEE Xplore (vol. 1, 1999), pp. 802–805

    Google Scholar 

  101. M. Haloua, A. Iggidr, E. Richard, On the Dynamic Behavior of a Hydraulic Cylinder. Proceedings of the 39th IEEE Conference on IEEE decision and control (vol. 2, 2000), pp. 1321–1322

    Google Scholar 

  102. H.C. Lu, W.C. Lin, Robust controller with disturbance rejection for hydraulic servo systems. IEEE Trans. Ind. Electron. 40(1), 157–162 (1993)

    Google Scholar 

  103. A. Halanay, C.A. Safta, F. Ursu, Stability analysis for a nonlinear model of a hydraulic servomechanism in a servoelastic framework. Nonlinear Anal. Real World Appl. 10(2), 1197–1209 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  104. Y.C. Zhou, M.H. Huang, Z.W. Liu, Y. Deng, On hydraulic position holding system of huge water press based on iterative learning control combined with proportional-differential (PD) control. J. Inf. Comput. Sci. 5(5), 2309–2315 (2009)

    Google Scholar 

  105. J. Zheng, S. Zhao, S. Wei, Adaptively Fuzzy Iterative Learning Control for SRM Direct-Drive Volume Control Servo Hydraulic Press. International conference on sustainable power generation and supply, Supergen IEEE (2009), pp. 1–6

    Google Scholar 

  106. C. Du, A. Wu, J. Chao, Speed Control of Hydraulic Press Based on Backstepping Method. Control conference IEEE (2010), pp. 5666–5669

    Google Scholar 

  107. D. Das, P. Chowdhury, M.W. Alam, An Application of Neural-Fuzzy Adaptive PID Controller a Direct Dive Volume Control Hydraulic Press. International conference on mechanical engineering and renewable energy (2015)

    Google Scholar 

  108. Y.C. Lin, D.D. Chen, M.S. Chen, A precise BP neural network-based online model predictive control strategy for die forging hydraulic press machine. Neural Comput. Appl. 1–12 (2016)

    Google Scholar 

  109. R.L. Feng, J.H. Wei, Adaptive robust motion control of powder compaction press. Trans. Chin. Soc. Agric. Mach. 46(8), 352–360 (2015)

    MathSciNet  Google Scholar 

  110. X.J. Lu, W. Zou, M.H. Huang, K. Deng, A process/shape-decomposition modeling method for deformation force estimation in complex forging processes. Int. J. Mech. Sci. 90, 190–199 (2015)

    Article  Google Scholar 

  111. X.J. Lu, C. Liu, M.H. Huang, Online probabilistic extreme learning machine for distribution modeling of complex batch forging processes. IEEE Trans. Ind. Inform. 11(6), 1277–1286 (2015)

    Article  Google Scholar 

  112. X.J. Lu, M.H. Huang, A novel multi-level modeling method for complex forging processes on hydraulic press machines. Int. J. Adv. Manuf. Technol. 79(9), 1869–1880 (2015)

    Article  Google Scholar 

  113. X.J. Lu, M.H. Huang, A simple online modeling approach for a time-varying forging process. Int. J. Adv. Manuf. Technol. 75(5-8), 1197–1205 (2014)

    Article  Google Scholar 

  114. X.J. Lu, M.H. Huang, System decomposition based multi-level control for hydraulic press machine. IEEE Trans. Ind. Electron. 59(8), 1080–1087 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). Introduction. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics