Skip to main content

Introduction of Shock

  • Chapter
  • First Online:
Essentials of Shock Management
  • 2962 Accesses

Abstract

Cardiogenic shock is a life-threatening medical condition resulting from an inadequate circulation of blood due to primary failure of the ventricles of the heart to function effectively. The most common cause of cardiogenic shock is pump failure due to extensive myocardial infarction. Early revascularization is recommended. Chest X-ray, EKG, and cardiac biomarkers are helpful for initial diagnosis. Vasopressors and inotropes often required, however, should be used in the lowest amount. Mechanical supports such as intra-aortic balloon pump, left ventricular assist devices, and extracorporeal life support can be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.

    Article  Google Scholar 

  2. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    Article  CAS  Google Scholar 

  3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  Google Scholar 

  4. Suess EM, Pinsky MR. Hemodynamic monitoring for the evaluation and treatment of shock: what is the current state of the art? Semin Respir Crit Care Med. 2015;36(6):890–8.

    Article  Google Scholar 

  5. De Backer D, Orbegozo Cortes D, Donadello K, Vincent J-L. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence. 2014;5(1):73–9.

    Article  Google Scholar 

  6. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.

    Article  CAS  Google Scholar 

  7. Marino PL. The ICU book. 4th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  8. Chawla LS, Zia H, Gutierrez G, Katz NM, Seneff MG, Shah M. Lack of equivalence between central and mixed venous oxygen saturation. Chest. 2004;126(6):1891–6.

    Article  Google Scholar 

  9. Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011;184(5):514–20.

    Article  Google Scholar 

  10. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.

    Article  Google Scholar 

  11. Weil MH, Shubin H. Proposed reclassification of shock states with special reference to distributive defects. Adv Exp Med Biol. 1971;23:13–23.

    Article  CAS  Google Scholar 

  12. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345(8):588–95.

    Article  CAS  Google Scholar 

  13. Ashruf JF, Bruining HA, Ince C. New insights into the pathophysiology of cardiogenic shock: the role of the microcirculation. Curr Opin Crit Care. 2013;19(5):381–6.

    Article  Google Scholar 

  14. Ely E, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–62.

    Article  CAS  Google Scholar 

  15. Kataja A, Tarvasmaki T, Lassus J, Kober L, Sionis A, Spinar J, et al. Altered mental status predicts mortality in cardiogenic shock—results from the CardShock study. Eur Heart J Acute Cardiovasc Care. 2018;7(1):38–44. https://doi.org/10.1177/2048872617702505.

    Article  PubMed  Google Scholar 

  16. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.

    Article  Google Scholar 

  17. Palevsky PM, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, et al. KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for Acute Kidney Injury. Am J Kidney Dis. 2013;61(5):649–72.

    Article  Google Scholar 

  18. Deitch EA. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg. 1990;125(3):403–4.

    Article  CAS  Google Scholar 

  19. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.

    Article  CAS  Google Scholar 

  20. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100(6):1619–36.

    Article  CAS  Google Scholar 

  21. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34(5):1297–310.

    Article  Google Scholar 

  22. Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.

    Article  Google Scholar 

  23. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10.

    Article  CAS  Google Scholar 

  24. Sakka SG. Hemodynamic Monitoring in the Critically Ill Patient – Current Status and Perspective. Front Med. 2015;2:44.

    Article  Google Scholar 

  25. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486–552.

    Article  Google Scholar 

  26. Surgeons ACo. Advanced trauma life support for doctors–student course manual. 8th ed. Chicago: American College of Surgeons; 2008.

    Google Scholar 

  27. Haider AA, Azim A, Rhee P, Kulvatunyou N, Ibraheem K, Tang A, et al. Substituting systolic blood pressure with shock index in the National Trauma Triage Protocol. J Trauma Acute Care Surg. 2016;81(6):1136–41.

    Article  Google Scholar 

  28. Tseng J, Nugent K. Utility of the shock index in patients with sepsis. Am J Med Sci. 2015;349(6):531–5.

    Article  Google Scholar 

  29. Yu T, Tian C, Song J, He D, Sun Z, Sun Z. Derivation and validation of shock index as a parameter for predicting long-term prognosis in patients with acute coronary syndrome. Sci Rep. 2017;7(1):11929.

    Article  Google Scholar 

  30. Zhang X, Wang Z, Wang Z, Fang M, Shu Z. The prognostic value of shock index for the outcomes of acute myocardial infarction patients: a systematic review and meta-analysis. Medicine. 2017;96(38):e8014.

    Article  Google Scholar 

  31. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.

    Article  Google Scholar 

  32. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. Supp Invest JAMA. 1996;276(11):889–97.

    Google Scholar 

  33. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366(9484):472–7.

    Article  Google Scholar 

  34. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2013(2):Cd003408.

    Google Scholar 

  35. Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003;290(20):2713–20.

    Article  CAS  Google Scholar 

  36. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348(1):5–14.

    Article  Google Scholar 

  37. Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, de Boisblanc B, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354(21):2213–24.

    Article  Google Scholar 

  38. Monnet X, Teboul JL. Transpulmonary thermodilution: advantages and limits. Crit Care. 2017;21(1):147.

    Article  Google Scholar 

  39. Jonas MM, Tanser SJ. Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr Opin Crit Care. 2002;8(3):257–61.

    Article  Google Scholar 

  40. Crittendon I, Dreyer WJ, Decker JA, Kim JJ. Ultrasound dilution: an accurate means of determining cardiac output in children. Pediatr Crit Care Med. 2012;13(1):42–6.

    Article  Google Scholar 

  41. Levitov A, Frankel HL, Blaivas M, Kirkpatrick AW, Su E, Evans D, et al. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-Part II: cardiac ultrasonography. Crit Care Med. 2016;44(6):1206–27.

    Article  Google Scholar 

  42. Frankel HL, Kirkpatrick AW, Elbarbary M, Blaivas M, Desai H, Evans D, et al. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-Part I: general ultrasonography. Crit Care Med. 2015;43(11):2479–502.

    Article  Google Scholar 

  43. Shokoohi H, Boniface KS, Pourmand A, Liu YT, Davison DL, Hawkins KD, et al. Bedside ultrasound reduces diagnostic uncertainty and guides resuscitation in patients with undifferentiated hypotension. Crit Care Med. 2015;43(12):2562–9.

    Article  Google Scholar 

  44. Ahn JH, Jeon J, Toh H-C, Noble VE, Kim JS, Kim YS, et al. SEARCH 8Es: a novel point of care ultrasound protocol for patients with chest pain, dyspnea or symptomatic hypotension in the emergency department. PLoS One. 2017;12(3):e0174581.

    Article  Google Scholar 

  45. Cecconi M, Rhodes A. Pulse pressure analysis: to make a long story short. Crit Care. 2010;14(4):175.

    Article  Google Scholar 

  46. Shapiro NI, Arnold R, Sherwin R, O’Connor J, Najarro G, Singh S, et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care. 2011;15(5):R223.

    Article  Google Scholar 

  47. Masip J, Mesquida J, Luengo C, Gili G, Goma G, Ferrer R, et al. Near-infrared spectroscopy StO2 monitoring to assess the therapeutic effect of drotrecogin alfa (activated) on microcirculation in patients with severe sepsis or septic shock. Ann Intensive Care. 2013;3(1):30.

    Article  Google Scholar 

  48. Marin-Corral J, Claverias L, Bodi M, Pascual S, Dubin A, Gea J, et al. Prognostic value of brachioradialis muscle oxygen saturation index and vascular occlusion test in septic shock patients. Med Int. 2016;40(4):208–15.

    CAS  Google Scholar 

  49. Massey MJ, Shapiro NI. A guide to human in vivo microcirculatory flow image analysis. Crit Care. 2016;20:35.

    Article  Google Scholar 

  50. Heard SO. Gastric tonometry*: the hemodynamic monitor of choice (pro). Chest. 2003;123(5, Supplement):469S–74S.

    Article  Google Scholar 

  51. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6(1):111.

    Article  Google Scholar 

  52. Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016;316(12):1298–309.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Joon Suh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suh, G.J., Lee, H.J. (2018). Introduction of Shock. In: Suh, G. (eds) Essentials of Shock Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-5406-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5406-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5405-1

  • Online ISBN: 978-981-10-5406-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics