Skip to main content
  • 1996 Accesses

Abstract

Up-conversion is an anti-Stokes optical process that can emit ultraviolet/visible/near-infrared light by converting low-energy near-infrared excitation photon radiation. With the advent of nanotechnology and the inexpensive high-power infrared diode lasers, the rare earth-doped up-conversion luminescent nanoparticles have been extensively studied for its potential applications in various fields. In recent years, rare earth-doped up-conversion nanoparticles have been developed as a promising alternatives luminescent optical labels to organic fluorophores and quantum dots for applications in biological assays and medical imaging. The unique optical property of rare earth-doped up-conversion nanoparticles offers low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this chapter, we give a general introduction to rare earth up-conversion nanoparticles, including the rare earth up-conversion materials, up-conversion mechanisms, synthesis methods, surface modifications, optical properties tuning and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloembergen N (1959) SOLID STATE INFRARED QUANTUM COUNTERS. Phys. Rev. Lett. 2: 84.

    Google Scholar 

  2. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104: 139.

    Google Scholar 

  3. Gamelin DR, Gudel HU (2000) Design of luminescent inorganic materials: New photophysical processes studied by optical spectroscopy. Accounts. Chem. Res. 33: 235.

    Google Scholar 

  4. Jin J, Wong ET (2011) Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, London.

    Google Scholar 

  5. Franken, PA, Weinreich G, Peters CW, Hill AE (1961) Generation of optical harmonics. Phys. Rev. Lett. 7: 118.

    Google Scholar 

  6. Wang F, Deng RR, Wang J, Wang QX, Han Y, Zhu HM, Chen XY, Liu XG (2011), Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10: 968.

    Google Scholar 

  7. Niedbala RS (2000) Multiphoton up-converting phosphors for use in rapid immunoassays Proc. SPIE–Int. Soc. Opt. Eng. 3913: 193.

    Google Scholar 

  8. Auzel F (2002) Up-conversion in rare-earth-doped systems: past, present and futureProc. SPIE–Int. Soc. Opt. Eng. 4766: 179.

    Google Scholar 

  9. Suyver J F, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Kramer KW (2005) Novel Materials Doped with Trivalent Lanthanides and Transition Metal Ions Showing near-Infrared to Visible Photon Upconversion Opt. Mater. 27: 1111.

    Google Scholar 

  10. Downing E, Hesselink L, Alston J, Macfarlane RR (1996) A three-color, solid-state, three-dimensional display. Science. 273: 1185.

    Google Scholar 

  11. Cohen BE (2010) Biological imaging: Beyond fluorescence. Nature, 467: 407.

    Google Scholar 

  12. VanderEnde BM, Aartsa L, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells Phys. Chem. Chem. Phys. 11: 11081.

    Google Scholar 

  13. Wang G, Peng Q, Li YD (2011), Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res., 44: 322.

    Google Scholar 

  14. Chen J, Zhao XJ (2012), Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing. Sensors. 12: 2414.

    Google Scholar 

  15. Haase M, Schafer H (2011) Upconverting nanoparticles. Angew. Chem. Int. Ed. 50: 5808.

    Google Scholar 

  16. Wang, F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38: 976.

    Google Scholar 

  17. Wang F, Liu XG (2008) Upconversion Multicolor Fine-Tuning: Visible to near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. J. Am. Chem. Soc. 130: 5642.

    Google Scholar 

  18. Gnach A, Bednarkiewicz A (2012) Lanthanide-doped up-converting nanoparticles: merits and challenges. Nano Today. 7: 532.

    Google Scholar 

  19. Passuello T, Pedroni M, Piccinelli F, Polizzi S, Marzola P, Tambalo S, Conti G, Benati D, Vetrone F, Bettinelli M, Speghini A (2012) PEG-capped, lanthanide doped GdF3 nanoparticles: luminescent and T2 contrast agents for optical and MRI multimodal imaging. Nanoscale, 4: 7682.

    Google Scholar 

  20. Schäfer H, Ptacek P, Zerzouf O, Haase M (2008) Synthesis and Optical Properties of KYF4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF4. Adv. Funct. Mater. 18: 2913.

    Google Scholar 

  21. Chen C, Sun, LD, Li ZX, Li LL, Zhang J, and Zhang YW (2010) Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir. 26: 8797.

    Google Scholar 

  22. Schäfer H, Ptacek P, Eickmeier H, Haase M (2009) Synthesis of Hexagonal Yb3+, Er3+-Doped NaYF4 Nanocrystals at Low Temperature. Adv. Funct. Mater. 19: 3091.

    Google Scholar 

  23. Chen DQ, Yu Huang Y, Wang FY (2011) Phase transition from hexagonal LnF3 (Ln = La, Ce, Pr) to cubic Ln0.8M0.2F2.8 (M = Ca, Sr, Ba) nanocrystals with enhanced upconversion induced by alkaline-earth doping. Chem. Commun. 47: 2601.

    Google Scholar 

  24. Yin W, Zhao L, Zhou L, Gu Z, Liu X, Tian, G, Jin S, Yan L, Ren W, Xing G, Zhao Y(2012) Enhanced Red Emission from GdF3:Yb3+,Er3+ Upconversion Nanocrystals by Li+ Doping and Their Application for Bioimaging Chem. Eur. J. 18: 9239.

    Google Scholar 

  25. Li F, Li C, Liu X, Bai T, Dong W, Zhang X, Shi Z, Feng S (2013) Microwave-assisted synthesis and up–down conversion luminescent properties of multicolor hydrophilic LaF3: Ln3+ nanocrystals Dalton Trans. 42: 2015.

    Google Scholar 

  26. Liu Q, Sun Y, Yang TS, Feng W, Li CG, Li FY (2011) Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. J. Am. Chem. Soc. 133: 17122.

    Google Scholar 

  27. Shi F, Wang J, Zhai X, Zhao D, Qin W (2011) Facile synthesis of beta-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence CrystEngComm. 13:3782.

    Google Scholar 

  28. Yang DM, Dai, YL, Ma PA, Kang XJ, Cheng ZY, Li CX, Lin J (2013) One-Step Synthesis of Small-Sized and Water-Soluble NaREF4 Upconversion Nanoparticles for In Vitro Cell Imaging and Drug Delivery. Chem. Eur. J. 19: 2685.

    Google Scholar 

  29. Sarkar S, Meesaragandla, Hazra BC, Mahalingam, V (2013) Sub-5 nm Ln3+-doped BaLuF5 Nanocrystals: A Platform to Realize Upconversion via Interparticle Energy Transfer (IPET). Adv. Mater. 25: 856.

    Google Scholar 

  30. Chen G, Ohulchanskyy TY, Kumar R, Ågren H, Prasad PN (2010) Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence ACS Nano. 4: 3163.

    Google Scholar 

  31. Wong HT, Vetrone, Naccache F R, Chan HLW, Hao J, Capobianco, JA(2011) Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J. Mater. Chem. 21: 16589.

    Google Scholar 

  32. Wang GF, Peng Q, Li YD (2009) Upconversion Luminescence of Monodisperse CaF2:Yb3+/Er3+Nanocrystals J. Am. Chem. Soc. 131: 14200.

    Google Scholar 

  33. Dong NN, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández, Maestro JELM, Iglesias-de la Cruz MC, Sanz-Rodriguez, Juarranz FA, Chen F, Vetrone F, Capobianco JA, Solé JG, Bettinelli, Jaque MD, Speghini A (2011) NIR-to-NIR Two-Photon Excited CaF2:Tm3+,Yb3+ Nanoparticles: Multifunctional Nanoprobes for Highly Penetrating Fluorescence Bio-imaging. ACS Nano. 5: 8665.

    Google Scholar 

  34. Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R, Hu W, Tok A I Y, Han Y, Zhang Q, Fan Q, Huang W, Capobianco J A, Huang L (2011) Lanthanide-Doped NaxScF3+x Nanocrystals: Crystal Structure Evolution and Multicolor Tuning. J. Am. Chem. Soc. 134: 8340.

    Google Scholar 

  35. Chen F, Bu W, Zhang S, Liu J, Fan W, Zhou L, Peng W, Shi J (2013) Gd3+-Ion-Doped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization Adv. Funct. Mater. 23: 298.

    Google Scholar 

  36. Chen D, Yu F, Huang Y, Lin H, Huang P, Yang A, Wang Z, Wang Y (2012) Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shellnanocrystals with near-infrared to near-infrared dual-modal luminescence. J. Mater. Chem. 22: 2632.

    Google Scholar 

  37. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. Adv. Mater. 24: 1226.

    Google Scholar 

  38. Zhou J, Yu MX, Sun Y, Zhang XZ, Zhu XJ, Wu ZH, Wu DM, Li FY (2011) Fluorine-18-labeled Gd3+/Yb3+/Er3+ codoped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials. 32: 1148.

    Google Scholar 

  39. Sun Y, Yu M X, Liang S, Zhang Y J, Li C G, Mou TT, Yang WJ, Zhang XZ, Li B, Huang CH, Li FY (2011) Fluorine-18 Labeled Rare-Earth Nanoparticles for Positron Emission Tomography (Pet) Imaging of Sentinel Lymph Node. Biomaterials. 32: 2999.

    Google Scholar 

  40. Yang Y, Sun Y, Cao TY, Peng JJ, Liu Y, Wu YQ, Feng W, Zhang YJ, Li FY (2013) Hydrothermal Synthesis of NaLuF4:153Sm,Yb,Tm Nanoparticles and their Application in Dual-modality Upconversion Luminescence and SPECT Bioimaging. Biomaterials. 34: 774.

    Google Scholar 

  41. Yang Y, Sun Y, Liu Y, Peng JJ, Wu YQ, Zhang YJ, Feng W, Li FY (2013) Long-term in vivo biodistribution and toxicity of Gd(OH)3 nanorods. Biomaterials. 34: 508.

    Google Scholar 

  42. Sun Y, Liu Q, Peng JJ, Zhou J, Yang PY, Zhang YJ, Li FY (2013) Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking. Biomaterials. 34: 2289.

    Google Scholar 

  43. Huang XY, Han SY, Huang W (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42: 173.

    Google Scholar 

  44. Wang F(2015) Photon Upconversion Nanomaterials springer, chapter1.

    Google Scholar 

  45. Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38: 976.

    Google Scholar 

  46. Liu Y, Tu D, Zhu H Zhu H, Ma E, Chen X (2013) Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale. 5: 1369.

    Google Scholar 

  47. Chen GY, Qiu HL, Prasad PN, Chen XY (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114: 5161.

    Google Scholar 

  48. Martin I R, Yanes AC, Mendez-Ramos J, Torres M E Rodriguez VD (2001) Cooperative Energy Transfer in Yb-Tb Codoped Silica Sol-Gel Glasses. J. Appl. Phy. 89: 2520.

    Google Scholar 

  49. Dwivedi Y, Thakur SN, Rai SB (2007) Study of Frequency Upconversion in Yb3+/Eu3+ by Cooperative Energy Transfer in Oxyfluoroborate Glass Matrix. Appl. Phys. B-Las. and Opt. 89: 45.

    Google Scholar 

  50. Chivian JS, Case WE, Eden DD (1979) The Photon Avalanche-a New Phenomenon in Pr3+ Based Infrared Quantum Counters. Appl. Phys. Lett. 35: 124.

    Google Scholar 

  51. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46: 4630.

    Google Scholar 

  52. Zhang YW, Sun X, Si R, You LP, Yan CH (2005) Single-Crystalline and Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor. J. Am. Chem. Soc. 127: 3260.

    Google Scholar 

  53. Mai H X, Zhang Y W, Si R Yan ZG, Sun LD, You LP, Yan CH (2006) High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 128: 6426.

    Google Scholar 

  54. Mai H, Zhang Y, Sun L, Yan C (2007) Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C 111: 13730.

    Google Scholar 

  55. Yin AX, Zhang YW, Sun LD, Yan CH (2010) Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. Nanoscale 2: 953.

    Google Scholar 

  56. Mai HX, Zhang YW, Sun LD, Yan CH (2007) Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals. J. Phys. Chem. C 111: 13721.

    Google Scholar 

  57. Du YP, Zhang YW, Sun LD, Yan CH (2009) Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluoroacetate precursors. Dalton Trans. 38: 8574.

    Google Scholar 

  58. Yi GS, Chow GM (2006) Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16: 2324.

    Google Scholar 

  59. Boyer JC, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128: 7444.

    Google Scholar 

  60. Yi GS, Chow GM (2007) Water-Soluble NaYF4:Yb, Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence. Chem. Mater. 19: 341.

    Google Scholar 

  61. Boyer JC, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4:Er3+/Yb3 + and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 7: 847.

    Google Scholar 

  62. Boyer JC, Gagnon J, Cuccia LA, Capobianco JA (2007) Synthesis, Characterization, and Spectroscopy of NaGdF4: Ce3+, Tb3+/NaYF4 Core/Shell Nanoparticles. Chem. Mater. 19: 3358.

    Google Scholar 

  63. Pichaandi J, Boyer JC, Delaney KR, van Veggel FCJM (2011) Two-Photon Upconversion Laser (Scanning and Wide-Field) Microscopy Using Ln3+-Doped NaYF4 Upconverting Nanocrystals: A Critical Evaluation of their Performance and Potential in Bioimaging. J. Phys. Chem. C 115: 19054.

    Google Scholar 

  64. Khan AF, Yadav R, Mukhopadhya PK, Singh S, Dwivedi C, Dutta V, Chawla S (2011) Core–shell nanophosphor with enhanced NIR–visible upconversion as spectrum modifier for enhancement of solar cell efficiency. J. Nanopart. Res. 13: 6837.

    Google Scholar 

  65. Chen G, Ohulchanskyy TY, Liu S, Law WC, Wu F, Swihart MT, Agren H, Prasad P N (2012) Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications. ACS Nano. 6: 2969.

    Google Scholar 

  66. Chen G, Shen JT, Ohulchanskyy Y, Patel NJ, Kutikov AZ, Li Song J, Pandey RK, Ågren H, Prasad PN, Han G (2012) (α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano 6: 8280.

    Google Scholar 

  67. Kar A, Patra A (2012) Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale 4: 3608.

    Google Scholar 

  68. Zhang C, Lee JY (2013) Prevalence of Anisotropic Shell Growth in Rare Earth Core–Shell Upconversion Nanocrystals. ACS Nano. 7: 4393.

    Google Scholar 

  69. Qian H-S, Zhang Y (2008) Synthesis of Hexagonal-Phase Core − Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langmuir 24: 12123.

    Google Scholar 

  70. Tang Y, Di W, Zhai X, Yang R, Qin W (2013) NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core–Shell Nanoparticles. ACS Catal. 3: 405.

    Google Scholar 

  71. Zeng S, Tsang MK, Chan CF, Wong KL, Hao J (2012) PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials. 33: 9232.

    Google Scholar 

  72. Wang F, Chatterjee DK, Li Z, Zhang Y, Fan X, Wang M (2006) Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology, 17: 5786.

    Google Scholar 

  73. Li CX, Quan ZW, Yang PP, Huang SS, Lian HZ, Lin J (2008) Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process. J. Phys. Chem. C, 112: 13395.

    Google Scholar 

  74. Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J (2012) Controlled Synthesis of Uniform and Monodisperse Upconversion Core/Mesoporous Silica Shell Nanocomposites for Bimodal Imaging. Chem. Eur. J. 18: 2335.

    Google Scholar 

  75. Zhang CM, Hou ZY, Chai RT, Cheng ZY, Xu ZH, Li CX, Huang L, Lin J (2010) Mesoporous SrF2 and SrF2:Ln3+ (Ln = Ce, Tb, Yb, Er) Hierarchical Microspheres: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. J. Phys. Chem. C 114: 6928.

    Google Scholar 

  76. Dorman JA, Choi JH, Kuzmanich G, Chang JP (2012) Elucidating the Effects of a Rare-Earth Oxide Shell on the Luminescence Dynamics of Er3+:Y2O3 Nanoparticles, J. Phys. Chem. C, 116: 10333.

    Google Scholar 

  77. Bogdan NE, Rodriguez, Sanz-Rodriguez MF, Iglesias de la Cruz MC, Juarranz A, Jaque D, Sole J G, Capobianco JA (2012) Bio-functionalization of ligand-free upconverting lanthanide doped nanoparticles for bio-imaging and cell targeting. Nanoscale 4:3647.

    Google Scholar 

  78. Wang S, SY Song, Deng RP, Guo HL, Lei YQ, Cao F, Li XY, Su SQ, Zhang HJ (2010) Hydrothermal synthesis and upconversion photoluminescence properties of lanthanide doped YF3 sub-microflowers. CrystEngComm 12: 3537.

    Google Scholar 

  79. Wang S, Deng RP, Guo HL, Song SY, Cao F, Li XY, Su SQ, Zhang HJ (2010) Lanthanide doped Y6O5F8/YF3 microcrystals: phase-tunable synthesis and bright white upconversion photoluminescence properties. Dalton Trans. 39: 9153.

    Google Scholar 

  80. Yin WY, Zhou LG, Gu ZJ, Tian G, Jin S, Yan L, Liu XX, Xing GM, Ren WL, Liu F (2012) Pan, Z.W., Zhao, Y.L.: Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. J. Mater. Chem. 22: 6974.

    Google Scholar 

  81. Ren WL, Tian G, Zhou LJ, Yin WY, Yan L, Jin S, Zu Y, Li SJ, Gu ZJ, Zhao YL (2012) Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 4: 3754.

    Google Scholar 

  82. Song Y, Huang Y, Zhang L, Zheng Y, Guo N, You H (2012) Gd2O2S:Yb,Er submicrospheres with multicolor upconversion fluorescence. RSC Adv. 2:4777.

    Google Scholar 

  83. Wang X, Zhuang J, Peng Q, Li YD (2005) A General Strategy for Nanocrystal Synthesis. Nature 437: 121.

    Google Scholar 

  84. Wang X, Zhuang J, Peng Q, Li YD (2006) Hydrothermal Synthesis of Rare-Earth Fluoride Nanocrystals. Inorg. Chem. 45: 6661.

    Google Scholar 

  85. Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb3+, Er3+, Phosphors of Controlled Size and Morphology, Adv. Mater. 17: 2119.

    Google Scholar 

  86. Zeng JH, Li ZH, Su J, Wang LY, Yan RX, Li YD (2006) Synthesis of complex rare earth fluoride nanocrystal phosphors. Nanotechnology. 17: 3549.

    Google Scholar 

  87. Li CX, Yang J, Quan Z, Yang PP, Kong DY, Lin J (2007) Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources, Chem. Mater. 19: 4933.

    Google Scholar 

  88. Yi GS, Chow GM (2005) Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence. J. Mater. Chem. 15: 4460.

    Google Scholar 

  89. Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 4: 2191.

    Google Scholar 

  90. Kong X, Zhang H (2009) Ionothermal synthesis of hexagonal-phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors. Chem. Commun. 6628.

    Google Scholar 

  91. Chen C, Sun LD, Li ZX, Li LL, Zhang J, and Zhang YW (2010) Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir 26: 8797.

    Google Scholar 

  92. Wang H Q, Nann T (2009) Monodisperse Upconverting Nanocrystals by Microwave-Assisted Synthesis. ACS Nano 3: 3804.

    Google Scholar 

  93. Wang S, Su SQ, Song SY, Deng RP, Zhang HJ (2012) Raisin-like rare earth doped gadolinium fluoride nanocrystals: microwave synthesis and magnetic and upconversion luminescent properties. CrystEngComm. 14: 4266.

    Google Scholar 

  94. Cao TY, Yang Y, Gao Y, Zhou J, Li ZQ, Li FY (2011) High-Quality Water-Soluble and Surface-Functionalized Upconversion Nanocrystals as Luminescent Probes for Bioimaging. Biomaterials. 32: 2959.

    Google Scholar 

  95. Hu H, Yu MX, Li FY, Chen ZG, Gao X, Xiong LQ, Huang CH (2008) Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels. Chem. Mater. 20: 7003.

    Google Scholar 

  96. Naccache R, Vetrone F, Mahalingam V, Cuccia LA, and Capobianco JA (2009) Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles. Chem. Mater. 21: 717.

    Google Scholar 

  97. Boyer JC, Manseau MP, Murray JI, van Veggel FCJM (2010) Surface Modification of Upconverting NaYF4 Nanoparticles with PEG − Phosphate Ligands for NIR (800 nm) Biolabeling within the Biological Window. Langmuir, 26: 1157.

    Google Scholar 

  98. Hu H, Xiong LQ, Zhou J, Li FY, Cao TY, Huang CH (2009) Multimodal-Luminescence Core–Shell Nanocomposites for Targeted Imaging of Tumor Cells. Chem.Eur. J. 15:3577.

    Google Scholar 

  99. Jiang S, Zhang Y, (2010) Upconversion Nanoparticle-Based FRET System for Study of siRNA in Live Cells. Langmuir. 26: 6689.

    Google Scholar 

  100. Li Z, Zhang Y, (2006) Monodisperse silica-coated polyvinylpyrrolidone NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem., Int. Ed. 45: 7732.

    Google Scholar 

  101. Liu Q, Li CY, Yang TS, Yi T, Li FY (2010) “Drawing” upconversion nanophosphors into water throughst guest interaction. Chem. Commun. 46: 5551.

    Google Scholar 

  102. Liu Q, Chen M, Sun Y, Chen G, Yang T, Gao Y, Zhang X, Li FY (2011) 18F-labeled Rare-earth self-assemble nanosystem for dual-modal upconversion luminescence and positron emission tomography imaging in vivo. Biomaterials. 32: 8243.

    Google Scholar 

  103. Jalil R A, Zhang Y, (2008) Biocompatibility of Silica Coated NaYF4 Upconversion Fluorescent Nanocrystals, Biomaterials. 29: 4122.

    Google Scholar 

  104. Meiser F, Cortez C, Caruso F (2004) Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles. Angew. Chem. Int. Ed., 43:5954.

    Google Scholar 

  105. Hilderbrand SA, Shao FW, Salthouse C, Mahmood U, Weissleder R (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun. 4188.

    Google Scholar 

  106. Chen Z, Chen H, Hu H, Yu MX, Li FY, Zhang Q, Zhou ZG, Yi T, Huang CH (2008) Versatile Synthesis Strategy for Carboxylic Acid-Functionalized Upconversion Nanophosphors as Biological Labels. J. Am. Chem. Soc. 130: 3023.

    Google Scholar 

  107. Zhou HP, Xu CH, Sun W, Yan CH (2009) Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications. Adv. Funct. Mater. 19: 3892.

    Google Scholar 

  108. Kobayashi H, Kosaka N, Ogawa M, Morgan NY, Smith PD, Murray CB, Ye XC, Collins J, Kumar G A, Bell H, Choyke P L (2009) In vivo multiple color lymphatic imaging using upconverting nanocrystals. J. Mater. Chem. 19: 6481.

    Google Scholar 

  109. Wang LY, Yan RX, Hao ZY, Wang L, Zeng JH, Bao H, Wang X, Peng Q, Li YD (2005) Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles Angew. Chem., Int. Ed., 44: 6054.

    Google Scholar 

  110. Qian HS, Li ZQ, Zhang Y (2008) Multicolor polystyrene nanospheres tagged with up-conversion fluorescent nanocrystals. Nanotechnology, 19: 255601.

    Google Scholar 

  111. Lu HC, Yi GS, Zhao SY, Chen DP, Guo LH, Cheng J (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties, J. Mater. Chem., 14:1336.

    Google Scholar 

  112. Liu ZY, Yi GS, Zhang HT, Ding J, Zhang YW, Xue JM (2008) Monodisp- erse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals, Chem. Commun. 694.

    Google Scholar 

  113. Ehlert O, Thomann R, Darbandi M, Nann T (2008) A Four-Color Colloidal Multiplexing Nanoparticle System ACS Nano, 2: 120.

    Google Scholar 

  114. Mi C, Tian Z, Cao C, Wang Z, Mao C, Xu S (2011) Novel Microwave-Assisted Solvothermal Synthesis of NaYF4:Yb,Er Upconversion Nanoparticles and Their Application in Cancer Cell Imaging. Langmuir. 27: 14632.

    Google Scholar 

  115. Shan J, Ju Y (2007) Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating. Appl. Phys. Lett. 91: 123103.

    Google Scholar 

  116. Yi G, Peng Y, Gao Z (2011) Strong Red-Emitting near-Infrared-to-Visible Upconversion Fluorescent Nanoparticles. Chem. Mater. 23: 2729.

    Google Scholar 

  117. Liu SH, Han MY (2010) Silica-Coated Metal Nanoparticles Chem. Asian J. 5: 36.

    Google Scholar 

  118. Caruso, F. (2001) Nanoengineering of Particle Surfaces, Adv. Mater., 13:11.

    Google Scholar 

  119. Piao YZ, Burns A, Kim J, Wiesner U, Hyeon T (2008) Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. Adv. Funct. Mater. 18:3745.

    Google Scholar 

  120. Wang F, Han Y, Lim C S, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong M H, Liu X G (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature. 463: 1061.

    Google Scholar 

  121. Chen D, Huang P, Yu Y, Huang F, Yang A, Wang Y (2011) Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chem. Commun. 47: 5801.

    Google Scholar 

  122. Liu N, Qin WP, Qin GS, Jiang T, Zhao D (2011) Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures. Chem. Commun. 47: 7671.

    Google Scholar 

  123. Paudel HP, Zhong LL, Bayat K, Baroughi MF, Smith S, Lin CK, Jiang CY, Berry MT, May PS (2011) Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces.,J. Phys. Chem. C, 115: 19028.

    Google Scholar 

  124. Yuan PY, Lee YH, Gnanasammandhan MK, Guan Z, Zhang Y, Xu QH (2012) Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core–shell nanocomposites for cell imaging. Nanoscale, 4: 5132.

    Google Scholar 

  125. Wang Y, Tu LP, Zhao, JW, Sun YJ, Kong XG, Zhang H (2009) Upconversion luminescence of β-NaYF4:Yb3+,Er3+@β-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence.,J. Phys. Chem. C, 113: 7164.

    Google Scholar 

  126. Zhang F, Che RH, Li XM, Yao C, Yang JP, Shen DK, Hu P, Li W, Zhao DY (2012) Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties. Nano Lett. 12: 2852.

    Google Scholar 

  127. Park YI, Kim JH, Lee KT, Jeon K-S, Na HB, Yu JH, Kim HM, Lee N, Choi SH, Baik S-I, Kim H, Park SP, Park B-J, Kim YW, Lee SH, Yoon SY, Song IC, Moon WK, Suh YD, Hyeon T (2009) Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent. Adv. Mater. 21: 4467.

    Google Scholar 

  128. Wang YF, Sun LD, Xiao JW, Feng W, Zhou JC, Shen J, Yan CH. (2012) Rare-Earth Nanoparticles with Enhanced Upconversion Emission and Suppressed Rare-Earth-Ion Leakage Chem. Eur. J. 18: 5558.

    Google Scholar 

  129. Li Z, Zhang Y, Jiang S. (2008) Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles. Adv. Mater. 20: 4765.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wang, S., Zhang, H. (2016). Foundations of Up-conversion Nanoparticles. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_7

Download citation

Publish with us

Policies and ethics