Skip to main content

Near Infrared Light Active Lanthanide-Doped Upconversion Nanoparticles: Recent Advances and Applications

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Abstract

The near infrared light absorbing lanthanide-doped upconversion nanoparticles have been extensively used in the diverse fields due to their unique properties, such as sharp emission peaks, deep tissue penetration, low toxicity, long anti-Stokes shift, low defect concentration, and enhanced photostability. These properties make them excellent materials comparative to the other conventional luminescent materials. Upconversion nanomaterials have found a wide range of applications in photocatalysis, photovoltaics, biomedicine, sensing, security printing, and many other applications. In this particular chapter we have discussed the fundamental concepts and different mechanisms involved in upconversion processes. In addition, a brief note on various applications using these materials along with summary and future perspective have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin, X., Liu, X., Huang, W., Bettinelli, M., Liu, X.: Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117(5), 4488–4527 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. Xia, Z., Meijerink, A.: Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. Chem. Soc. Rev. 46(1), 275–299 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. Mahata, M.K., Hofsäss, H.C., Vetter, U.: Photon-upconverting materials: advances and prospects for various emerging applications. In: Luminescence—An Outlook on the Phenomena and Their Applications, pp. 109–131. InTech, Rijeka (2016)

    Google Scholar 

  4. Van Der Ende, B.M., Aarts, L., Meijerink, A.: Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. Auzel, F.: Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104(1), 139–174 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Auzel, F.: Upconversion processes in coupled ion systems. J. Lumin. 45(1–6), 341–345 (1990)

    Article  CAS  Google Scholar 

  7. Tian, G., Gu, Z., Zhou, L., Yin, W., Liu, X., Yan, L., Jin, S., Ren, W., Xing, G., Li, S.: Mn2+ dopant-controlled synthesis of NaYF4: Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 24(9), 1226–1231 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. Liu, G., Jacquier, B.: Spectroscopic Properties of Rare Earths in Optical Materials. Springer Science & Business Media, Dordrecht (2006)

    Google Scholar 

  9. Zhou, J., Liu, Q., Feng, W., Sun, Y., Li, F.: Upconversion luminescent materials: advances and applications. Chem. Rev. 115(1), 395–465 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. Muhr, V., Wilhelm, S., Hirsch, T., Wolfbeis, O.S.: Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces. Acc. Chem. Res. 47(12), 3481–3493 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. He, G.S., Markowicz, P.P., Lin, T.C., Prasad, P.N.: Observation of stimulated emission by direct three-photon excitation. Nature. 415, 767 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Wang, F., Liu, X.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38(4), 976–989 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, C., Lingdong, S., Zhang, Y., Chunhua, Y.: Rare earth upconversion nanophosphors: synthesis, functionalization and application as biolabels and energy transfer donors. J. Rare Earths. 28(6), 807–819 (2010)

    Article  CAS  Google Scholar 

  14. Lingeshwar Reddy, K., Srinivas, V., Shankar, K.R., Kumar, S., Sharma, V., Kumar, A., Bahuguna, A., Bhattacharyya, K., Krishnan, V.: Enhancement of luminescence intensity in red emitting NaYF4:Yb/Ho/Mn upconversion nanophosphors by variation of reaction parameters. J. Phys. Chem. C. 121(21), 11783–11793 (2017)

    Article  CAS  Google Scholar 

  15. Li, F., Li, C., Liu, J., Liu, X., Zhao, L., Bai, T., Yuan, Q., Kong, X., Han, Y., Shi, Z.: Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography. Nanoscale. 5(15), 6950–6959 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. Mahata, M.K., Hofsäss, H.C., Vetter, U.: Photon-upconverting materials: advances and prospects for various emerging applications. In: Luminescence – An Outlook on the Phenomena and their Applications. IntechOpen (2016)

    Google Scholar 

  17. Judd, B.R.: Optical absorption intensities of rare-earth ions. Phys. Rev. 127(3), 750 (1962)

    Article  CAS  Google Scholar 

  18. Ding, M., Chen, D., Yin, S., Ji, Z., Zhong, J., Ni, Y., Lu, C., Xu, Z.: Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4: Yb3+/Er3+ microcrystals by simply tuning the KF dosage. Sci. Rep. 5, 12745 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, T., Wang, F.: Lanthanide-Doped Core–Shell Upconversion Nanophosphors, Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications, pp. 289–309. Springer (2016)

    Book  Google Scholar 

  20. Soukka, T., Rantanen, T., Kuningas, K.: Photon upconversion in homogeneous fluorescence-based bioanalytical assays. Ann. N. Y. Acad. Sci. 1130(1), 188–200 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Nadort, A., Zhao, J., Goldys, E.M.: Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale. 8(27), 13099–13130 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. Ong, L.C., Gnanasammandhan, M.K., Nagarajan, S., Zhang, Y.: Upconversion: road to El Dorado of the fluorescence world. Luminescence. 25(4), 290–293 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Chen, X., Peng, D., Ju, Q., Wang, F.: Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev. 44(6), 1318–1330 (2015)

    Article  PubMed  Google Scholar 

  24. Boyer, J.C., Cuccia, L.A., Capobianco, J.A.: Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 7(3), 847–852 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. Yi, G.S., Chow, G.M.: Water-soluble NaYF4: Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19(3), 341–343 (2007)

    Article  CAS  Google Scholar 

  26. Thoma, R., Insley, H., Hebert, G.: The sodium fluoride-lanthanide trifluoride systems. Inorg. Chem. 5(7), 1222–1229 (1966)

    Article  CAS  Google Scholar 

  27. Liu, Q., Yang, T., Feng, W., Li, F.: Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J. Am. Chem. Soc. 134(11), 5390–5397 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, F.: General introduction to upconversion luminescence materials. In: Photon Upconversion Nanomaterials, pp. 1–20. Springer, Berlin, Heidelberg (2015)

    Google Scholar 

  29. Chen, G., Liu, Y., Zhang, Y., Somesfalean, G., Zhang, Z., Sun, Q., Wang, F.: Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals. Appl. Phys. Lett. 91(13), 133103 (2007)

    Article  CAS  Google Scholar 

  30. Joubert, M.-F.: Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 11(2–3), 181–203 (1999)

    Article  CAS  Google Scholar 

  31. Wang, F., Deng, R., Wang, J., Wang, Q., Han, Y., Zhu, H., Chen, X., Liu, X.: Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 10(12), 968 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. Suyver, J., Aebischer, A., Biner, D., Gerner, P., Grimm, J., Heer, S., Krämer, K., Reinhard, C., Güdel, H.U.: Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27(6), 1111–1130 (2005)

    Article  CAS  Google Scholar 

  33. Chen, G., Ohulchanskyy, T.Y., Kumar, R., Ågren, H., Prasad, P.N.: Ultrasmall monodisperse NaYF4: Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano. 4(6), 3163–3168 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, G., Ohulchanskyy, T.Y., Kachynski, A., Ågren, H., Prasad, P.N.: Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4: Er3+ nanocrystals under excitation at 1490 nm. ACS Nano. 5(6), 4981–4986 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dwivedi, Y., Thakur, S., Rai, S.: Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix. Appl. Phys. B. 89(1), 45–51 (2007)

    Article  CAS  Google Scholar 

  36. Auzel, F.: Multiphonon processes, cross-relaxation and up-conversion in ion-activated solids, exemplified by minilaser materials. In: Radiationless Processes, pp. 213–286. Springer, Boston (1980)

    Chapter  Google Scholar 

  37. Chen, G., Qiu, H., Prasad, P.N., Chen, X.: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114(10), 5161–5214 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chivian, J.S., Case, W., Eden, D.: The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters. Appl. Phys. Lett. 35(2), 124–125 (1979)

    Article  CAS  Google Scholar 

  39. Lahoz, F., Martın, I., Briones, A.: Infrared-laser induced photon avalanche upconversion in Ho3+–Yb 3+ codoped fluoroindate glasses. J. Appl. Phys. 95(6), 2957–2962 (2004)

    Article  CAS  Google Scholar 

  40. Shan, J., Ju, Y.: A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4: Yb, Er upconversion nanophosphors. Nanotechnology. 20(27), 275603 (2009)

    Article  PubMed  CAS  Google Scholar 

  41. Naccache, R., Vetrone, F., Mahalingam, V., Cuccia, L.A., Capobianco, J.A.: Controlled synthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+ nanoparticles. Chem. Mater. 21(4), 717–723 (2009)

    Article  CAS  Google Scholar 

  42. Jin, B., Wang, S., Lin, M., Jin, Y., Zhang, S., Cui, X., Gong, Y., Li, A., Xu, F., Lu, T.J.: Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens. Bioelectron. 90, 525–533 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y.W., Sun, X., Si, R., You, L.P., Yan, C.H.: Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 127(10), 3260–3261 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. Yi, G.S., Chow, G.M.: Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16(18), 2324–2329 (2006)

    Article  CAS  Google Scholar 

  45. Mai, H.X., Zhang, Y.W., Si, R., Yan, Z.G., Sun, L.D., You, L.P., Yan, C.H.: High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128(19), 6426–6436 (2006)

    Article  CAS  PubMed  Google Scholar 

  46. Mai, H.X., Zhang, Y.W., Sun, L.D., Yan, C.H.: Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/shell-structured nanocrystals. J. Phys. Chem. C. 111(37), 13721–13729 (2007)

    Article  CAS  Google Scholar 

  47. Mai, H.X., Zhang, Y.W., Sun, L.D., Yan, C.H.: Size-and phase-controlled synthesis of monodisperse NaYF4: Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C. 111(37), 13730–13739 (2007)

    Article  CAS  Google Scholar 

  48. Teng, X., Zhu, Y., Wei, W., Wang, S., Huang, J., Naccache, R., Hu, W., Tok, A.I.Y., Han, Y., Zhang, Q.: Lanthanide-doped NaxScF3+x nanocrystals: crystal structure evolution and multicolor tuning. J. Am. Chem. Soc. 134(20), 8340–8343 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. Wei, Y., Lu, F., Zhang, X., Chen, D.: Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4: Yb, Er nanoplates. Chem. Mater. 18(24), 5733–5737 (2006)

    Article  CAS  Google Scholar 

  50. Wang, F., Deng, R., Liu, X.: Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc. 9(7), 1634 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. Palo, E., Tuomisto, M., Hyppänen, I., Swart, H.C., Hölsä, J., Soukka, T., Lastusaari, M.: Highly uniform up-converting nanoparticles: why you should control your synthesis even more. J. Lumin. 185, 125–131 (2017)

    Article  CAS  Google Scholar 

  52. Wang, X., Zhuang, J., Peng, Q., Li, Y.: A general strategy for nanocrystal synthesis. Nature. 437(7055), 121 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. Cheng, L., Yang, K., Zhang, S., Shao, M., Lee, S., Liu, Z.: Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res. 3(10), 722–732 (2010)

    Article  CAS  Google Scholar 

  54. Zhang, F., Wan, Y., Yu, T., Zhang, F., Shi, Y., Xie, S., Li, Y., Xu, L., Tu, B., Zhao, D.: Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int. Ed. 46(42), 7976–7979 (2007)

    Article  CAS  Google Scholar 

  55. Cao, T., Yang, Y., Gao, Y., Zhou, J., Li, Z., Li, F.: High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials. 32(11), 2959–2968 (2011)

    Article  CAS  PubMed  Google Scholar 

  56. Yang, J., Shen, D., Li, X., Li, W., Fang, Y., Wei, Y., Yao, C., Tu, B., Zhang, F., Zhao, D.: One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications. Chem Eur J. 18(43), 13642–13650 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Z., Chen, H., Hu, H., Yu, M., Li, F., Zhang, Q., Zhou, Z., Yi, T., Huang, C.: Versatile synthesis strategy for carboxylic acid− functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130(10), 3023–3029 (2008)

    Article  CAS  PubMed  Google Scholar 

  58. Li, F., Li, C., Liu, X., Chen, Y., Bai, T., Wang, L., Shi, Z., Feng, S.: Hydrophilic, upconverting, multicolor, lanthanide-doped NaGdF4 nanocrystals as potential multifunctional bioprobes. Chem Eur J. 18(37), 11641–11646 (2012)

    Article  CAS  PubMed  Google Scholar 

  59. Yang, D., Kang, X., Dai, Y., Hou, Z., Cheng, Z., Li, C., Lin, J.: Hollow structured upconversion luminescent NaYF4: Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials. 34(5), 1601–1612 (2013)

    Article  CAS  PubMed  Google Scholar 

  60. Dai, Y., Yang, D., Kang, X., Zhang, X., Li, C., Hou, Z., Cheng, Z., Lin, J.: Doxorubicin conjugated NaYF4: Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer. Biomaterials. 33(33), 8704–8713 (2012)

    Article  CAS  PubMed  Google Scholar 

  61. Bogdan, N., Vetrone, F., Ozin, G.A., Capobianco, J.A.: Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11(2), 835–840 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. Dong, A., Ye, X., Chen, J., Kang, Y., Gordon, T., Kikkawa, J.M., Murray, C.B.: A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133(4), 998–1006 (2010)

    Article  CAS  Google Scholar 

  63. Liras, M., González-Béjar, M., Peinado, E., Francés-Soriano, L., Pérez-Prieto, J., Quijada-Garrido, I., García, O.: Thin amphiphilic polymer-capped upconversion nanoparticles: enhanced emission and thermoresponsive properties. Chem. Mater. 26(13), 4014–4022 (2014)

    Article  CAS  Google Scholar 

  64. Liu, Q., Chen, M., Sun, Y., Chen, G., Yang, T., Gao, Y., Zhang, X., Li, F.: Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials. 32(32), 8243–8253 (2011)

    Article  CAS  PubMed  Google Scholar 

  65. Huang, P., Liu, F., Chen, D., Wang, Y., Yu, Y.: Highly efficient near-infrared to visible upconversion luminescence in transparent glass ceramics containing Yb3+/Er3+: NaYF4 nanocrystals. Phys. Status Solidi A. 205(7), 1680–1684 (2008)

    Article  CAS  Google Scholar 

  66. Wang, M., Li, M., Yang, M., Zhang, X., Yu, A., Zhu, Y., Qiu, P., Mao, C.: NIR-induced highly sensitive detection of latent fingermarks by NaYF4: Yb, Er upconversion nanoparticles in a dry powder state. Nano Res. 8(6), 1800–1810 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Som, S., Yang, C.Y., Lu, C.H., Das, S.: Synthesis of Li+-ion activated NaYF4: Er3+/Yb3+ phosphors via a modified solid-state process for latent fingerprint detection. Ceram. Int. 45(5), 5703–5709 (2019)

    Article  CAS  Google Scholar 

  68. Vendrell, M., Maiti, K.K., Dhaliwal, K., Chang, Y.-T.: Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 31(4), 249–257 (2013)

    Article  CAS  PubMed  Google Scholar 

  69. Wu, X., Zhang, Y., Takle, K., Bilsel, O., Li, Z., Lee, H., Zhang, Z., Li, D., Fan, W., Duan, C.: Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano. 10(1), 1060–1066 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, K., Zhao, Q., Qin, S., Fu, Y., Liu, R., Zhi, J., Shan, C.: Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. J. Colloid Interface Sci. 537, 316–324 (2019)

    Article  CAS  PubMed  Google Scholar 

  71. Reddy, K.L., Sharma, P.K., Singh, A., Kumar, A., Shankar, K.R., Singh, Y., Garg, N., Krishnan, V.: Amine-functionalized, porous silica-coated NaYF4: Yb/Er upconversion nanophosphors for efficient delivery of doxorubicin and curcumin. Mater. Sci. Eng. C. 96, 86–95 (2019)

    Article  CAS  Google Scholar 

  72. Singh, B., Dhiman, A., Kumar, A.: Slow release of ciprofloxacin from β-cyclodextrin containing drug delivery system through network formation and supramolecular interactions. Int. J. Biol. Macromol. 92, 390–400 (2016)

    Article  CAS  PubMed  Google Scholar 

  73. Wang, C., Cheng, L., Liu, Z.: Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 32(4), 1110–1120 (2011)

    Article  CAS  PubMed  Google Scholar 

  74. Fedoryshin, L.L., Tavares, A.J., Petryayeva, E., Doughan, S., Krull, U.J.: Near-infrared-triggered anticancer drug release from upconverting nanoparticles. ACS Appl. Mater. Interfaces. 6(16), 13600–13606 (2014)

    Article  CAS  PubMed  Google Scholar 

  75. Reddy, K.L., Kumar, S., Kumar, A., Krishnan, V.: Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles. J. Hazard. Mater. 367, 694–705 (2019)

    Article  CAS  PubMed  Google Scholar 

  76. Kumar, A., Kumar, K., Krishnan, V.: Sunlight driven methanol oxidation by anisotropic plasmonic Au nanostructures supported on amorphous titania: influence of morphology on photocatalytic activity. Mater. Lett. 245, 45–48 (2019)

    Article  CAS  Google Scholar 

  77. Kumar, A., Sharma, V., Kumar, S., Kumar, A., Krishnan, V.: Towards utilization of full solar light spectrum using green plasmonic Au–TiOx photocatalyst at ambient conditions. Surf. Interfaces. 11, 98–106 (2018)

    Article  CAS  Google Scholar 

  78. Kaur, H., Kumar, A., Koner, R.R., Krishnan, V.: Metal-organic frameworks for photocatalytic degradation of pollutants. In: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants, pp. 91–126. Elsevier (2020)

    Chapter  Google Scholar 

  79. Auzel, F.: Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104(1), 139–173 (2004)

    Article  CAS  PubMed  Google Scholar 

  80. Wang, J., Zhang, Z.H., Zhang, X.D., Zhang, L., Wang, L., XU, L., Zhang, P.: Degradation of dyestuff wastewater using visible light in the presence of a novel nano TiO2 catalyst doped with upconversion luminescence agent. J. Environ. Sci. 17(5), 727–730 (2005)

    CAS  Google Scholar 

  81. Qin, W., Zhang, D., Zhao, D., Wang, L., Zheng, K.: Near-infrared photocatalysis based on YF3: Yb3+,Tm3+/TiO2 core/shell nanoparticles. Chem. Commun. (Camb.). 46(13), 2304–2306 (2010)

    Article  CAS  Google Scholar 

  82. Kumar, A., Reddy, K.L., Kumar, S., Kumar, A., Sharma, V., Krishnan, V.: Rational design and development of lanthanide-doped NaYF4@CdS–Au–RGO as quaternary plasmonic photocatalysts for harnessing visible–near-infrared broadband spectrum. ACS Appl. Mater. Interfaces. 10(18), 15565–15581 (2018)

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Q., Deng, J., Xu, Z., Chaker, M., Ma, D.: High-efficiency broadband C3N4 photocatalysts: synergistic effects from upconversion and plasmons. ACS Catal. 7(9), 6225–6234 (2017)

    Article  CAS  Google Scholar 

  84. Xu, Z., Quintanilla, M., Vetrone, F., Govorov, A.O., Chaker, M., Ma, D.: Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Adv. Funct. Mater. 25(20), 2950–2960 (2015)

    Article  CAS  Google Scholar 

  85. Li, D., Yu, S.H., Jiang, H.L.: From UV to near-infrared light-responsive metal–organic framework composites: plasmon and upconversion enhanced photocatalysis. Adv. Mater. 30(27), 1707377 (2018)

    Article  CAS  Google Scholar 

  86. Zhang, P., Rogelj, S., Nguyen, K., Wheeler, D.: Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J. Am. Chem. Soc. 128(38), 12410–12411 (2006)

    Article  CAS  PubMed  Google Scholar 

  87. Hampl, J., Hall, M., Mufti, N.A., Yung-mae, M.Y., MacQueen, D.B., Wright, W.H., Cooper, D.E.: Upconverting phosphor reporters in immunochromatographic assays. Anal. Biochem. 288(2), 176–187 (2001)

    Article  CAS  PubMed  Google Scholar 

  88. Deng, R., Xie, X., Vendrell, M., Chang, Y.T., Liu, X.: Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 133(50), 20168–20171 (2011)

    Article  CAS  PubMed  Google Scholar 

  89. Gao, Y.Q., Li, T., Wang, X.T., Qi, Y.C., Wen, Q., Shen, J.W., Qiu, L.Y., Wan-zhi, M.: Optical sensing composites for cysteine detection: combining rhodamine-based chemosensors with up-conversion nanocrystals. Sensors Actuators B Chem. 100(238), 1293–1301 (2017)

    Google Scholar 

  90. Wu, Z., Xu, E., Chughtai, M.F., Jin, Z., Irudayaraj, J.: Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles. Food Chem. 230, 673–680 (2017)

    Article  CAS  PubMed  Google Scholar 

  91. Wang, N., Yu, X., Zhang, K., Mirkin, C.A., Li, J.: Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. J. Am. Chem. Soc. 139(36), 12354–12357 (2017)

    Article  CAS  PubMed  Google Scholar 

  92. Reddy, K.L., Venkateswarulu, M., Shankar, K.R., Ghosh, S., Krishnan, V.: Upconversion luminescent material-based inorganic-organic hybrid sensing system for the selective detection of hydrazine in environmental samples. ChemistrySelect. 3(6), 1793–1800 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Krishnan, V. (2022). Near Infrared Light Active Lanthanide-Doped Upconversion Nanoparticles: Recent Advances and Applications. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_14

Download citation

Publish with us

Policies and ethics