Skip to main content

Impact of Climate Change on Arthropod Diversity

  • Chapter
  • First Online:
Arthropod Diversity and Conservation in the Tropics and Sub-tropics

Abstract

Today, understanding the consequences of changes in biological diversity due to global warming has become critically important. Climate change has profound influence on arthropod diversity. Principal effects of climate change on arthropod diversity include decrease in decomposers and predators and parasites and increased herbivory which affects the structure and function of ecosystems. With changes in arthropod communities, farmers are experiencing decreases in soil fertility and crop productivity. Amelioration includes organic farming, cultivation of climate-resilient crops, the use of water energy, wind energy, maintaining water bodies, reducing vehicular emissions, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrew NR, Hughes L (2004) Species diversity and structure of phytophagous beetle assemblages along a latitudinal gradient: predicting the potential impacts of climate change. Ecol Entomol 29:527–542. doi:10.1111/j.0307-6946.2004.00639.x

    Article  Google Scholar 

  • Antvogel H, Bonn A (2001) Environmental parameters and microspatial distribution of insects: a case study of carabids in an alluvial forest. Ecography 24:470–482

    Article  Google Scholar 

  • Arim M, Marquet PA, Jaksic FM (2007) On the relationship between productivity and food chain length at different ecological levels. Am Nat 169:62–72

    Article  PubMed  Google Scholar 

  • Awmack CS, Harrington R, Leather SR, Lawton JH (1996) The impacts of elevated CO2 on aphid-plant interactions. Asp Appl Biol 45:317–322

    Google Scholar 

  • Awmack CS, Harrington R, Leather SR (1997) Host plant effects on the performance of the aphid Aulacorthum solani (Kalt.) (Homoptera: Aphididae) at ambient and elevated CO2. Glob Chang Biol 3:545–549

    Article  Google Scholar 

  • Baker RHA, Sansford CE, Jarvis CH, Cannon RJC, MacLeod A, Walters KFA (2000) The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric Ecosyst Environ 82:57–71

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Smyrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Bauwens D, Garland JT, Castilla AM, Van Damme R (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioural covariation. Evolution 49:848–863

    Article  Google Scholar 

  • Berbery EH, Doyle M, Barros V (2006) Regional precipitation trends Cap. V. In: Barros V, Clarke R, Silva Dias P (eds) Climate change in the la Plata basin: Consejo Nacional de Investigaciones Científicas y Técnicas. Conicet Press, Buenos Aires, pp 61–72

    Google Scholar 

  • Bond W, Slingsby P (1984) Collapse of an ant-plant mutualism: the Argentine ant (Iridomyrmex humilis) and Myrmecochorous proteaceae. Ecology 65:1031–1037

    Article  Google Scholar 

  • Burghardt KT, Tallamy DW, Shriver WG (2008) Impact of native plants on bird and butterfly biodiversity in suburban landscapes. Conserv Biol 23:219–224

    Article  PubMed  Google Scholar 

  • Butler GD, Henneberry TJ, Clayton TE (1983) Bemisia tabaci (Homoptera, Aleyrodidae) – development, oviposition and longevity in relation to temperature. Ann Entomol Soc Am 76:310–313

    Article  Google Scholar 

  • Byrne DN, Bellows TS Jr (1991) Whitefly biology. Annu Rev Entomol 36:431–457

    Article  Google Scholar 

  • Canepuccia AD, Isacch JP, Gagliardini DA, Escalante AH, Iribarne OO (2007) Water bird response to changes in habitat area and diversity generated by rainfall in a SW Atlantic coastal lagoon. Waterbirds 30:541–553

    Article  Google Scholar 

  • Canepuccia AD, Farias AA, Escalante AH, Iribarne OO, Novaro A, Isacch JP (2008) Differential responses of marsh predators to rainfall-induced habitat loss and subsequent variations in prey availability. Can J Zool 86:407–418

    Article  Google Scholar 

  • Cannon RJC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Chang Biol 4:785–796

    Article  Google Scholar 

  • Carlson BE, Rowe MP (2009) Temperature and desiccation effects on the antipredator behaviour of Centruroides vittatus (Scorpiones: Buthidae). J Arachnol 37:321–330

    Article  Google Scholar 

  • Chander S, Phadke KG (1994) Incidence of mustard aphid, Lipaphis erysimi and potato aphid, Myzus persicae on rapeseed crop. Annu Agric Res 15(3):385–387

    Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  PubMed  Google Scholar 

  • Coley PD, Markham A (1998) Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim Change 39:455–472

    Article  Google Scholar 

  • Coll M, Hughes L (2008) Effects of elevated CO2 on an insect omnivore: a test for nutritional effects mediated by host plants and prey. Agr Ecosyst Environ 123:271–279

    Article  CAS  Google Scholar 

  • Collischonn W, Tucci CEM, Clarke RT (2001) Further evidence of changes in the hydrological regime of the River Paraguay: part of a wider phenomenon of climate change? J Hydrol 245:218–238

    Article  Google Scholar 

  • Cotrufo MF, Phil Ineson Scott Y (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Chang Biol 4(1):43–54

    Article  Google Scholar 

  • Coviella CE, Trumble JT (1999) Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conserv Biol 13:700–712

    Article  Google Scholar 

  • Das DK, Behera KS, Dhandapani A, Trivedi TP, Chona N, Bhandari P (2008) Development of forewarning systems of rice pests for their management. In: Prakash A, Sasmal A, Rao J, Tewari SN, Behera KS, Singh SK, Nandagopal V (eds) Rice pest management. Applied Zoologists Research Association, Cuttack, pp 187–200

    Google Scholar 

  • David JF (2009) Ecology of millipedes (Diplopoda) in the context of global change. Soil Org 81(3):719–733

    Google Scholar 

  • David JF, Geoffroy JJ, Celerier ML (2003) First evidence for photoperiodic regulation of the life cycle in a millipede species, Polydesmus angustus (Diplopoda, Polydesmidae). J Zool 260:111–116

    Article  Google Scholar 

  • De Souza ALT, de Souza Modena E (2004) Distribution of spiders on different types of inflorescences in the Brazilian pantanal. J Arachnol 32:345–348

    Article  Google Scholar 

  • Diku A, Mucak L (2010) Identification and implementation of adaptation response measures to Drini – Mati River Deltas. Report on expected climate change impacts on agriculture & livestock and their influence in the other economic sectors in the DMRD.UNDP Climate Change Program p 34

    Google Scholar 

  • Duffy JE (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol Lett 6:680–687

    Article  Google Scholar 

  • Environment Protection Agency (EPA) (1989) The potential effects of global climate change on the United States. Vol 2: National Studies. Review of the Report to Congress, US Environmental Protection Agency, Washington DC, p 261

    Google Scholar 

  • Evans H, Straw N, Watt A (2002) Climate change: implications for insect pests. For Comm Bull 125:99–118

    Google Scholar 

  • Farias AA, Jaksic FM (2007) Effects of functional constraints and opportunism on the functional structure of a vertebrate predator assemblage. J Anim Ecol 76:246–257

    Article  PubMed  Google Scholar 

  • Fujiyama S (1996) Annual thermos period regulating an eight-year life-cycle of a periodical diplopod, Parafontaria laminata armigera Verhoeff (Diplopoda). Pedobiologia 40:541–547

    Google Scholar 

  • Gao F, Zhu SR, Sun YC, Du L, Parajulee M, Kang L, Ge F (2008) Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii and Propylaea japonica. Environ Entomol 37(1):29–37

    Article  PubMed  Google Scholar 

  • Gore A (2006) An inconvenient truth: the planetary emergency of global warming and what we can do about it. Rodale Publisher, Emmaus

    Google Scholar 

  • Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838

    Article  CAS  PubMed  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94(879):421–425

    Article  Google Scholar 

  • Hamilton JG, Dermondy O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, Delucia E (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ Entomol 34:479–485

    Article  Google Scholar 

  • Harrington R, Fleming R, Woiwood IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:233–240

    Article  Google Scholar 

  • Heagle AS (2003) Influence of elevated carbon dioxide on interactions between Frankliniella occidentalis and Trifolium repens. Environ Entomol 32(3):421–424

    Article  Google Scholar 

  • Himanen SJ, Nissinen A, Dong WX, Nerg AM, Stewart CN, Poppy GM, Holopainen JK (2008) Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: are Bacillus thuringiensis (Bt) plants more susceptible to non-target herbivores in future climate? Glob Chang Biol 14:1437–1454

    Article  Google Scholar 

  • Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Hice C (2006) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Environ 4:87–95

    Article  Google Scholar 

  • Hughes L, Bazzaz FA (2001) Effects of elevated CO2 on five plant – aphid interactions. Entomologia Experimentaliset Appl 99(1):87–96

    Article  Google Scholar 

  • Hulle M, Bonhomme J, Maurice D, Simon JC (2008) Is the life cycle of high arctic aphids adapted to climate change? Polar Biol 31:1037–1042

    Article  Google Scholar 

  • Hunter MD (2001) Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agric For Entomol 3:153–159

    Article  Google Scholar 

  • IPCC (2001) Climate Change 2001: the scientific basis, report from working group I. Intergovernmental panel on Climate Change, Geneva

    Google Scholar 

  • IPCC (2007) Summary for policy makers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averty KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, Contribution of working group I to the IV assessment report of the Intergovernmental panel on Climate Change. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Isaacs R, Tuell J, Fiedler A, Gardiner M, Landis D (2009) Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Front Ecol Environ 7(4):196–203

    Article  Google Scholar 

  • Jaksic FM (2001) Ecological effects of El Niño in terrestrial ecosystems of western South America. Ecography 24:241–250

    Article  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723

    Article  CAS  PubMed  Google Scholar 

  • Kiritani K (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul Ecol 48:5–12

    Article  Google Scholar 

  • Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808

    Article  Google Scholar 

  • Kundo G, Hirao AS (2006) Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. Popul Ecol 48:49–58

    Article  Google Scholar 

  • Lassau SA, Hochuli DF, Cassis G, Reid CAM (2005) Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Divers Distrib 11:73–82

    Article  Google Scholar 

  • Lawton JH (1995) Population dynamic principles. In: Lawton JH, May RM (eds) Extinction rates. Oxford University Press, Oxford, pp 147–163

    Google Scholar 

  • Letnic M, Tamayo B, Dickman CR (2005) The responses of mammals to La Nina (El Niño Southern Oscillation) associated rainfall, predation, and wildfire in central Australia. J Mammal 86:689–703

    Article  Google Scholar 

  • Lewis T (1997) Thrips as crop pests. CAB International, University Press, Cambridge, p 740

    Google Scholar 

  • Lima M, Nils C, Stenseth NC, Jaksic FM (2002) Food web structure and climate effects on the dynamics of small mammals and owls in semi-arid Chile. Ecol Lett 5:273–284

    Article  Google Scholar 

  • Lincoln DE, Couvet D, Sionet N (1986) Response of an insect herbivore to host plants grown in carbon dioxide enriched atmospheres. Oecologia 69:556–560

    Article  Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323

    Article  Google Scholar 

  • Machin KE, Pringle JWS, Tamasige M (1962) The physiology of insect fibrillar muscle. IV. The effect of temperature on a beetle flight muscle. Proc R Soc Lond Ser B 155:493–499

    Article  Google Scholar 

  • Mahal MS, Agarwal N (2010) Impact of global climate change on arthropod fauna, pp. 50–56. In: Souvenier: National symposium on perspectives and challenges of integrated pest management for sustainable agriculture. Dr. Y.S Parmer university of Agriculture and forestry, Nauni, Solan, 19–21 Nov 2010

    Google Scholar 

  • Mandal A, Neenu S (2012) Impact of climate change on soil biodiversity: a review. Agric Rev 33(4):283–292

    Google Scholar 

  • Martin EM (2001) Abiotic vs. biotic influences on habitat selection of coexisting species: climate change impact? Ecology 82:175–188

    Article  Google Scholar 

  • Neumeister L (2010) Climate change and crop protection: anything can happen. Published by PAN Asia and the Pacific, Nov 2010, p 41

    Google Scholar 

  • Newton AC, Begg G, Swanston JS (2009) Deployment of diversity for enhanced crop function. Ann Appl Biol 154:309–322

    Article  Google Scholar 

  • Nooten SS, Andrew NR, Hughes L (2014) Potential impacts of climate change on insect communities: a transplant experiment. PLoS One 9(1):e85987. doi:10.1371/journal.pone.0085987

    Article  PubMed  PubMed Central  Google Scholar 

  • Norby RJ, Cotrufo MF (1998) A question of litter quality. Nature 396:17–18

    Article  CAS  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol 15:232–237

    Article  PubMed  Google Scholar 

  • Pelini SL, Prior KM, Parker DJ, Dzurisin JDK, Lindroth RL, Hellmann JJ (2009) Climate change and temporal and spatial mismatches in insect communities. In: Letcher T (ed) Climate change: observed impacts on planet earth. Elsevier B.V. limited, Dordrecht, pp 215–230

    Chapter  Google Scholar 

  • Petzoldt C, Seaman A (2007) Climate change effects on insects and pathogens. climate change and agriculture: promoting practical and profitable responses. http://www.panna.org/sites/default/files/CC%20insects&pests.pdf

  • Plummer N, Salinger MJ, Nicholls N, Suppiah R, Hennessy KJ, Leighton RM (1999) Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Clim Change 42:183–202

    Article  Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climate change on agricultural insect pests. Agric For Meteorol 57:221–240

    Article  Google Scholar 

  • Rao MS, Khan MAM, Srinivas K, Vanaja M, Rao GGSN, Ramakrishna YS (2006) Effects of elevated carbon dioxide and temperature on insect-plant interactions-a review. Agric Rev 27(3):200–207

    Google Scholar 

  • Raymond AC (2014) How climate change may affect arthropod pests http://www.amerinursery.com/growing/how-climate-change-may-affect-arthropod-pests/

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci 99(10):46–57

    CAS  Google Scholar 

  • Root TL, Schneider SH (1993) Can large-scale climatic models be linked with multi scale ecological studies? Conserv Biol 7:256–270

    Article  Google Scholar 

  • Sanders NJ, Belote RT, Weltzin JF (2004) Multitrophic effects of elevated atmospheric CO2 on understory plant and arthropod communities. Environ Entomol 33:1609–1616

    Article  Google Scholar 

  • Schadler M, Roeder M, Brandal R (2007) Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Glob Chang Biol 13:1005–1015

    Article  Google Scholar 

  • Seastedt TR, Crossley DA Jr (1984) The influence of arthropods on ecosystems. Bioscience 34:157–161

    Article  Google Scholar 

  • Sharma HC (2010a) Effect of climate change on IPM in grain legumes. In: 5th International Food Legumes Research Conference (IFLRC V), and the 7th European conference on grain legumes (AEP VII), 26–30th Apr 2010, Anatalaya

    Google Scholar 

  • Sharma HC (2010b) Global warming and climate change: impact on arthropod biodiversity, Pest management and Food security. National symposium on perspective and challenges of integrated pest management for sustainable agriculture, 19–21 Nov 2010, Solan

    Google Scholar 

  • Sharma HC, Srivastava CP, Durairaj C, Gowda CLL (2010) Pest management in grain legumes and climate change. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer Science + Business Media, Dordrecht, pp 115–140

    Chapter  Google Scholar 

  • Smith H (1996) The effects of elevated CO2 on aphids. Antenna 20:109–111

    Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Chang Biol 13:1823–1842

    Article  Google Scholar 

  • Stone AC, Gehring CA, Whitham TG (2010) Drought negatively affects communities on a foundation tree: growth rings predict diversity. Oekologia 164:751–761

    Google Scholar 

  • Talbot Trotter R III, Cobb NS, Whitham TG (2008) Arthropod community diversity and trophic structure: a comparison between extremes of plant stress. Ecol Entomol 33:1–11

    Article  Google Scholar 

  • The Indian Express. The Paris agreement on climate change. Dec 2015, p 20

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Siqueira MFD, Grainger A, Hannah L (2004) Extinction risk from climate change. Nature 427(6970):145–148

    Article  CAS  PubMed  Google Scholar 

  • Times of India (2014) Climate change threat to world mussels population. Times of India, 25th Dec, p 10

    Google Scholar 

  • Turner JS, Tracy CR, Weigler B, Baynes T (1985) Burst swimming of alligators and the effect of temperature. J Herpetol 19:450–458

    Article  Google Scholar 

  • Voigt W, Perner J, Davis AJ, Eggers T, Schumacher J, Bahram R, Fabian B, Heinrich W, Kohler G, Lichter D, Marstaller R, Sander FW (2003) Impact of climate change on crop-pest and pest-natural enemy interactions. Ecology 84:2444–2453

    Article  Google Scholar 

  • Wang KH, Tsai JH (1996) Temperature effect on development and reproduction of silver leaf whitefly (Homoptera: Aleyrodidae). Ann Entomol Soc Am 89:375–384

    Article  Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Davies GJN, Moss D, Thomas CD (2001) Impact of global warming on butterflies distributions. Nature 41:65–69

    Article  Google Scholar 

  • Webb JK, Shine R (1998) Thermoregulation by a nocturnal elapid snake (Hoplocephalus bungaroides) in southeastern Australia. Physiol Zool 71:680–692

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO (1987) The little things that run the world (the importance and conservation of invertebrates). Conserv Biol 1:344–346

    Article  Google Scholar 

  • Xannepuccia AD, Ciccihino A, Escalante A, Navaro A, Isaach JP (2009) Differential responses of marsh arthropods to rainfall-induced habitat loss. Zool Stud 48:173–183

    Google Scholar 

  • XAVIER SALAI- MARTIN (2006) The world distribution of income: falling poverty and convergence period. Q J Econ CXX(2):351–397

    Article  Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Google Scholar 

  • Zaller JG, Simmer L, Santer N, Tataw JT, Formayer H, Murer E, Hosch J, Baumgarten A (2014) Future rainfall variations reduce abundances of above ground arthropods in model agroecosystems with different soil types. Front Environ Sci 2:1–12

    Article  Google Scholar 

  • Ziska LS, Runion GR (2007) Future weed, pest and disease problems for plants. In: Newton CD, Carran RA, Edwards GR, Niklaus PA (eds) Agroecosystem in a changing climate. Taylor and Francis, Boca Raton, pp 261–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Prasannakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Prasannakumar, N.R., Kumar, K.P. (2016). Impact of Climate Change on Arthropod Diversity. In: Chakravarthy, A., Sridhara, S. (eds) Arthropod Diversity and Conservation in the Tropics and Sub-tropics. Springer, Singapore. https://doi.org/10.1007/978-981-10-1518-2_1

Download citation

Publish with us

Policies and ethics