Skip to main content

Graves’ Disease

  • Chapter
  • First Online:
Evidence-Based Endocrine Surgery

Abstract

Graves’ disease (GD) is an autoimmune thyroid disease characterized by signs and symptoms of thyrotoxicosis, coupled with unique extra-thyroidal manifestations such as Graves’ orbitopathy and dermopathy. Central to its pathogenesis is the loss of immunotolerance, which results in the development of thyroid autoantibodies, causing continuous and unregulated thyroid stimulation. Thyroid function testing in GD typically reveals overt hyperthyroidism, with elevated free T4 and/or T3, coupled with suppressed TSH. Measurement of TSH receptor antibodies titer, determination of the radioactive iodine uptake, or measurement of thyroidal blood flow on ultrasound represent the most commonly employed diagnostic tests for this condition. The current treatment modalities for GD are antithyroid drugs, which mainly inhibit thyroid hormone synthesis; radioiodine ablation, which results in ionizing damage to the thyroid follicular cells and gradual destruction of the gland; and thyroidectomy. Antithyroid drug treatment is associated with high disease relapse rate when withdrawn, and both radioiodine ablation and thyroidectomy are associated with permanent hypothyroidism. Thyroidectomy may be preferred in patients who present with large compressive goiters or concomitant thyroid cancers. Patients should be clinically and biochemically euthyroid prior to thyroidectomy or any elective non-thyroid surgeries. Rapid preoperative preparation using several drugs is occasionally needed in thyrotoxic patients requiring urgent surgeries. Preoperative optimization of calcium and vitamin D status with prompt initiation of calcium and calcitriol supplementation is recommended in patients undergoing thyroidectomy. None of the current treatment modalities target the underlying pathogenesis, and ongoing research focusing on the TSH receptor may represent potential treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chng C-L, Lim AYY, Tan HC, et al. Physiological and metabolic changes during the transition from hyperthyroidism to euthyroidism in Graves’ disease. Thyroid. 2016;26:1422–30.

    Article  CAS  PubMed  Google Scholar 

  2. Nyström HF, Jansson S, Berg G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin Endocrinol (Oxf). 2013;78:768–76.

    Article  Google Scholar 

  3. Brent GA. Graves’ disease. N Engl J Med. 2008;358:2594–605.

    Article  CAS  PubMed  Google Scholar 

  4. Weetman A. Graves’ disease. N Engl J Med. 2000;343:1236–48.

    Article  CAS  PubMed  Google Scholar 

  5. Brix TH, Kyvik KO, Hegedüs L. What is the evidence of genetic factors in the etiology of Graves’ disease? A brief review. Thyroid. 1998;8:727–34.

    Article  CAS  PubMed  Google Scholar 

  6. Lee HJ, Li CW, Hammerstad SS, Stefan M, Tomer Y. Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun. 2015;64:82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akamizu T, Sale MM, Rich SS, et al. Association of autoimmune thyroid disease with microsatellite markers for the thyrotropin receptor gene and CTLA-4 in Japanese patients. Thyroid. 2000;10:851–8.

    Article  CAS  PubMed  Google Scholar 

  8. Yanagawa T, Hidaka Y, Guimaraes V, Soliman M, DeGroot LJ. CTLA-4 gene polymorphism associated with Graves’ disease in a Caucasian population. J Clin Endocrinol Metab. 1995;80:41–5.

    CAS  PubMed  Google Scholar 

  9. Kurylowicz A, Kula D, Ploski R, et al. Association of CD40 gene polymorphism (C-1T) with susceptibility and phenotype of Graves’ disease. Thyroid. 2005;15:1119–24.

    Article  CAS  PubMed  Google Scholar 

  10. Heward JM, Brand OJ, Barrett JC, Carr-Smith JD, Franklyn JA, Gough SC. Association of PTPN22 haplotypes with Graves’ disease. J Clin Endocrinol Metab. 2007;92:685–90.

    Article  CAS  PubMed  Google Scholar 

  11. Winsa B, Adami H-O, Bergström R, Gamstedt A, Dahlberg PA, Adamson U, Jansson R, Karlsson A. Stressful life events and Graves’ disease. Lancet. 1991;338:1475–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wiersinga WM. Smoking and thyroid. Clin Endocrinol. 2013;79:145–51.

    Article  CAS  Google Scholar 

  13. Cooper DS. Hyperthyroidism. Lancet. 2003;362:459–68.

    Article  CAS  PubMed  Google Scholar 

  14. Manji N, Carr-Smith JD, Boelaert K, et al. Influences of age, gender, smoking, and family history on autoimmune thyroid disease phenotype. J Clin Endocrinol Metab. 2006;91:4873–80.

    Article  CAS  PubMed  Google Scholar 

  15. Muldoon BT, Mai VQ, Burch HB. Management of Graves’ disease: An overview and comparison of clinical practice guidelines with actual practice trends. Endocrinol Metab Clin North Am. 2014;43:495–516.

    Article  PubMed  Google Scholar 

  16. Klein I, Ojamaa K. Hormone action. N Engl J Med. 2001;344:501–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bahn RS. Graves’ ophthalmopathy. N Engl J Med. 2010;362:726–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bahn RS. Current insights into the pathogenesis of graves’ ophthalmopathy. Horm Metab Res. 2015;47:773–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wiersinga WM. Management of Graves’ ophthalmopathy. Nat Clin Pract Endocrinol Metab. 2007;3:396–404.

    Article  CAS  PubMed  Google Scholar 

  20. Chng C-L, Seah LL, Khoo DHC. Ethnic differences in the clinical presentation of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab. 2012;26:249–58.

    Article  PubMed  Google Scholar 

  21. Burch HB, Wartofsky L. Graves’ ophthalmopathy: current concepts regarding pathogenesis and management. Endocr Rev. 1993;14:747–93.

    CAS  PubMed  Google Scholar 

  22. Bartalena L. Prevention of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab. 2012;26:371–9.

    Article  PubMed  Google Scholar 

  23. Bartalena L. Graves’ orbitopathy: imperfect treatments for a rare disease. Eur Thyroid J. 2013;2:259–69.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schwartz KM, Fatourechi V, Ahmed DDF, Pond GR. Extensive personal experience: dermopathy of Graves’ disease (pretibial myxedema): long-term outcome. J Clin Endocrinol Metab. 2002;87:438–46.

    CAS  PubMed  Google Scholar 

  25. Fatourechi V, Garrity JA, Bartley GB, Bergstralh EJ, Gorman CA. Orbital decompression in Graves’ ophthalmopathy associated with pretibial myxedema. J Endocrinol Investig. 1993;16:433–7.

    Article  CAS  Google Scholar 

  26. Bartley GB, Fatourechi V, Kadrmas EF, Jacobsen SJ, Ilstrup DM, Garrity JA, Gorman CA. The incidence of Graves’ ophthalmopathy in Olmsted County, Minnesota. Am J Ophthalmol. 1995;120:511–7.

    Article  CAS  PubMed  Google Scholar 

  27. Fatourechi V, Ahmed DDF, Schwartz KM. Thyroid acropachy: report of 40 patients treated at a single institution in a 26-year period. J Clin Endocrinol Metab. 2002;87:5435–41.

    Article  CAS  PubMed  Google Scholar 

  28. Fatourechi V, Bartley GB, Eghbali-Fatourechi GZ, Powell CC, Ahmed DDF, Garrity JA. Graves’ dermopathy and acropachy are markers of severe Graves’ ophthalmopathy. Thyroid. 2003;13:1141–4.

    Article  PubMed  Google Scholar 

  29. Bartalena L, Fatourechi V. Extrathyroidal manifestations of Graves’ disease: a 2014 update. J Endocrinol Investig. 2014;37:691–700.

    Article  CAS  Google Scholar 

  30. Fatourechi V. Thyroid dermopathy and acropachy. Best Pract Res Clin Endocrinol Metab. 2012;26:553–65.

    Article  CAS  PubMed  Google Scholar 

  31. Fatourechi V. Thyroid dermopathy and acropachy. Expert Rev Dermatol. 2011;6:75–90.

    Article  Google Scholar 

  32. Kung AWC. Clinical review: thyrotoxic periodic paralysis: a diagnostic challenge. J Clin Endocrinol Metab. 2006;91:2490–5.

    Article  CAS  PubMed  Google Scholar 

  33. Bernard E, Med M, Cheah JS. Electrocardiographic changes in thyrotoxic periodic paralysis. J Electrocardiol. 1979;12:263–70.

    Article  Google Scholar 

  34. Loh KC, Pinheiro L, Ng KS. Thyrotoxic periodic paralysis complicated by near-fatal ventricular arrhythmias. Singap Med J. 2005;46:88–9.

    CAS  Google Scholar 

  35. Chang CC, Cheng CJ, Sung CC, Chiueh TS, Lee CH, Chau T, Lin SH. A 10-year analysis of thyrotoxic periodic paralysis in 135 patients: focus on symptomatology and precipitants. Eur J Endocrinol. 2013;169:529–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maciel RMB, Lindsey SC, Dias MR, Silva D, Maciel RMB, Lindsey SC, Dias MR. Novel etiopathophysiological aspects of thyrotoxic periodic paralysis. Nat Rev Endocrinol. 2011;7:657–67.

    Article  CAS  PubMed  Google Scholar 

  37. Vijayakumar A, Ashwath G, Thimmappa D. Thyrotoxic periodic paralysis: clinical challenges. J Thyroid Res. 2014;2014:649502.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Woeber KA. Triiodothyronine production in Graves’ hyperthyroidism. Thyroid. 2006;16:687–90.

    Article  CAS  PubMed  Google Scholar 

  39. Carlé A, Knudsen N, Pedersen IB, Perrild H, Ovesen L, Rasmussen LB, Laurberg P. Determinants of serum T4 and T3 at the time of diagnosis in nosological types of thyrotoxicosis: a population-based study. Eur J Endocrinol. 2013;169:537–45.

    Article  PubMed  CAS  Google Scholar 

  40. Shigemasa C, Abe K, Taniguchi SI, Mitani Y, Ueda Y, Adachi T, Urabe K, Tanaka T, Yoshida A, Mashiba H. Lower serum free thyroxine (T4) levels in painless thyroiditis compared with Graves’ disease despite similar serum total T4 levels. J Clin Endocrinol Metab. 1987;65:359–63.

    Article  CAS  PubMed  Google Scholar 

  41. Ross DS, Burch HB, Cooper DS, et al. 2016 American Thyroid Association Guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016;26:1343–421.

    Article  PubMed  Google Scholar 

  42. Goh SY, Ho SC, Seah LL, Fong KS, Khoo DHC. Thyroid autoantibody profiles in ophthalmic dominant and thyroid dominant Grave’s disease differ and suggest ophthalmopathy is a multiantigenic disease. Clin Endocrinol. 2004;60:600–7.

    Article  CAS  Google Scholar 

  43. Feldt-Rasmussen U, Schleusener H, Carayon P. Meta-analysis evaluation of the impact of thyrotropin receptor antibodies on long term remission after medical therapy of Graves’ disease. J Clin Endocrinol Metab. 1994;78:98–102.

    CAS  PubMed  Google Scholar 

  44. Carella C, Mazziotti G, Sorvillo F, Piscopo M, Cioffi M, Pilla P, Nersita R, Iorio S, Amato G, Braverman LE, Roti E. Serum thyrotropin receptor antibodies concentrations in patients with Graves’ disease before, at the end of methimazole treatment, and after drug withdrawal: evidence that the activity of thyrotropin receptor antibody and/or thyroid response modify during. Thyroid. 2006;16:295–302.

    Article  CAS  PubMed  Google Scholar 

  45. Abeillon-Du Payrat J, Chikh K, Bossard N, et al. Predictive value of maternal second-generation thyroid-binding inhibitory immunoglobulin assay for neonatal autoimmune hyperthyroidism. Eur J Endocrinol. 2014;171:451–60.

    Article  PubMed  CAS  Google Scholar 

  46. Czepczyński R. Nuclear medicine in the diagnosis of benign thyroid diseases. Nucl Med Rev Cent East Eur. 2012;15:113–9.

    PubMed  Google Scholar 

  47. Smith JR, Oates E. Radionuclide imaging of the thyroid gland: patterns, pearls, and pitfalls. Clin Nucl Med. 2004;29:181–93.

    Article  PubMed  Google Scholar 

  48. Bartalena L. Diagnosis and management of graves disease: a global overview. Nat Rev Endocrinol. 2013;9:724–34.

    Article  CAS  PubMed  Google Scholar 

  49. Tozzoli R, Bagnasco M, Giavarina D, Bizzaro N. TSH receptor autoantibody immunoassay in patients with Graves’ disease: improvement of diagnostic accuracy over different generations of methods. Systematic review and meta-analysis. Autoimmun Rev. 2012;12:107–13.

    Article  CAS  PubMed  Google Scholar 

  50. Franklyn JA. What is the role of radioiodine uptake measurement and thyroid scintigraphy in the diagnosis and management of hyperthyroidism? Clin Endocrinol (Oxf). 2010;72:11–2.

    Article  Google Scholar 

  51. Cappelli C, Pirola I, De Martino E, Agosti B, Delbarba A, Castellano M, Rosei EA. The role of imaging in Graves’ disease: a cost-effectiveness analysis. Eur J Radiol. 2008;65:99–103.

    Article  CAS  PubMed  Google Scholar 

  52. Hari Kumar KVS, Pasupuleti V, Jayaraman M, Abhyuday V, Rayudu BR, Modi KD. Role of thyroid Doppler in differential diagnosis of thyrotoxicosis. Endocr Pract. 2009;15:6–9.

    Article  CAS  PubMed  Google Scholar 

  53. Cooper DS. Antithyroid drugs. N Engl J Med. 2005;352:905–17.

    Article  CAS  PubMed  Google Scholar 

  54. Wartofsky L, Glinoer D, Solomon B, Nagataki S, Lagasse R, Nagayama Y, Izumi M. Differences and similarities in the diagnosis and treatment of graves’ disease in Europe, Japan, and the United States. Thyroid. 1991;1:129–35.

    Article  CAS  PubMed  Google Scholar 

  55. Vaidya B, Williams GR, Abraham P, Pearce SHS. Radioiodine treatment for benign thyroid disorders: results of a nationwide survey of UK endocrinologists. Clin Endocrinol (Oxf). 2008;68:814–20.

    Article  Google Scholar 

  56. Abraham P, Avenell A, McGeoch SC, Clark LF, Bevan JS. Antithyroid drug regimen for treating Graves’ hyperthyroidism. Cochrane Database Syst Rev. 2010;1:1–75.

    Google Scholar 

  57. Vaidya B, Wright A, Shuttleworth J, Donohoe M, Warren R, Brooke A, Gericke CA, Ukoumunne OC. Block & replace regime versus titration regime of antithyroid drugs for the treatment of Graves’ disease: a retrospective observational study. Clin Endocrinol (Oxf). 2014;81:610–3.

    Article  CAS  Google Scholar 

  58. Abraham P, Avenell A, Park CM, Watson WA, Bevan JS. A systematic review of drug therapy for Graves’ hyperthyroidism. Eur J Endocrinol. 2005;153:489–98.

    Article  CAS  PubMed  Google Scholar 

  59. Okosieme O, Lazarus J. Current trends in antithyroid drug treatment of Graves’ disease. Expert Opin Pharmacother. 2016;17:2005–17.

    Article  CAS  PubMed  Google Scholar 

  60. Sundaresh V, Brito JP, Wang Z, Prokop LJ, Stan MN, Murad MH, Bahn RS. Comparative effectiveness of therapies for graves’ hyperthyroidism: a systematic review and network meta-analysis. J Clin Endocrinol Metab. 2013;98:3671–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakamura H, Miyauchi A, Miyawaki N, Imagawa J. Analysis of 754 cases of antithyroid drug-induced agranulocytosis over 30 years in Japan. J Clin Endocrinol Metab. 2013;98:4776–83.

    Article  CAS  PubMed  Google Scholar 

  62. Watanabe N, Narimatsu H, Noh JY, Yamaguchi T, Kobayashi K, Kami M, Kunii Y, Mukasa K, Ito K, Ito K. Antithyroid drug-induced hematopoietic damage: a retrospective cohort study of agranulocytosis and pancytopenia involving 50,385 patients with Graves’ disease. J Clin Endocrinol Metab. 2012. https://doi.org/10.1210/jc.2011-2221.

    Article  CAS  Google Scholar 

  63. Ruiz JK, Rossi GV, Vallejos HA, Brenet RW, Lopez IB. Fulminant hepatic failure associated with propylthiouracil. Ann Pharmacother. 2003;37:224–8.

    Article  PubMed  Google Scholar 

  64. Wang MT, Lee WJ, Huang TY, Chu CL, Hsieh CH. Antithyroid drug-related hepatotoxicity in hyperthyroidism patients: a population-based cohort study. Br J Clin Pharmacol. 2014;78:619–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Andersen S, Olsen J, Laurberg P. Antithyroid drug side effects in the population and in pregnancy. J Clin Endocrinol Metab. 2016;101:1606–14.

    Article  PubMed  Google Scholar 

  66. Andersohn F, Konzen C, Garbe E. Systematic review: agranulocytosis induced by nonchemotherapy drugs. Ann Intern Med. 2007;146:657–65.

    Article  PubMed  Google Scholar 

  67. Akmal A, Kung J. Propylthiouracil, and methimazole, and carbimazole-related hepatotoxicity. Expert Opin Drug Saf. 2014;13:1397–406.

    Article  CAS  PubMed  Google Scholar 

  68. Rivkees SA, Szarfman A. Dissimilar hepatotoxicity profiles of propylthiouracil and methimazole in children. J Clin Endocrinol Metab. 2010;95:3260–7.

    Article  CAS  PubMed  Google Scholar 

  69. Balavoine A-S, Glinoer D, Dubucquoi S, Wémeau J-L. Antineutrophil cytoplasmic antibody-positive small-vessel vasculitis associated with antithyroid drug therapy: how significant is the clinical problem. Thyroid. 2015;25:1273–81.

    Article  CAS  PubMed  Google Scholar 

  70. Lim AY, Kek PC, Soh AW. Carbimazole-induced myositis in the treatment of Graves’ disease: a complication in genetically susceptible individuals? Singapore Med J. 2013;54:e133–6.

    Article  PubMed  Google Scholar 

  71. Chng C-L, Kek PC, Khoo DH-C. Carbimazole-induced acute pancreatitis and cholestatic hepatitis. Endocr Pract. 2011;17:960–1.

    Article  PubMed  Google Scholar 

  72. Taylor PN, Vaidya B. Side effects of anti-thyroid drugs and their impact on the choice of treatment for thyrotoxicosis in pregnancy. Eur Thyroid J. 2012;1:176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Allahabadia A, Daykin J, Holder RL, Sheppard MC, Gough SCL, Franklyn JA. Age and gender predict the outcome of treatment for Graves’ hyperthyroidism. J Clin Endocrinol Metab. 2000;85:1038–42.

    CAS  PubMed  Google Scholar 

  74. Nedrebo BG, Holm PI, Uhlving S, Sorheim JI, Skeie S, Eide GE, Husebye ES, E a L, Aanderud S. Predictors of outcome and comparison of different drug regimens for the prevention of relapse in patients with Graves’ disease. Eur J Endocrinol. 2002;147:583–9.

    Article  CAS  PubMed  Google Scholar 

  75. Azizi F, Ataie L, Hedayati M, Mehrabi Y, Sheikholeslami F. Effect of long-term continuous methimazole treatment of hyperthyroidism: comparison with radioiodine. Eur J Endocrinol. 2005;152:695–701.

    Article  CAS  PubMed  Google Scholar 

  76. Villagelin D, Romaldini JH, Santos RB, Milkos AB, Ward LS. Outcomes in relapsed Graves’ disease patients following radioiodine or prolonged low dose of methimazole treatment. Thyroid. 2015;25:1282–90.

    Article  CAS  PubMed  Google Scholar 

  77. Leslie WD, Ward L, Salamon EA, Ludwig S, Rowe RC, Cowden EA. A randomized comparison of radioiodine doses in Graves’ hyperthyroidism. J Clin Endocrinol Metab. 2003;88:978–83.

    Article  CAS  PubMed  Google Scholar 

  78. De Rooij A, Vandenbroucke JP, Smit JWA, Stokkel MPM, Dekkers OM. Clinical outcomes after estimated versus calculated activity of radioiodine for the treatment of hyperthyroidism: systematic review and meta-analysis. Eur J Endocrinol. 2009;161:771–7.

    Article  PubMed  CAS  Google Scholar 

  79. Acharya SH, Avenell A, Philip S, Burr J, Bevan JS, Abraham P. Radioiodine therapy (RAI) for Graves’ disease (GD) and the effect on ophthalmopathy: a systematic review. Clin Endocrinol. 2008;69:943–50.

    Article  Google Scholar 

  80. Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, Perros P, Salvi M, Wiersinga WM. The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy Guidelines for the Management of Graves’ Orbitopathy. Eur Thyroid J. 2016;55:9–269.

    Article  CAS  Google Scholar 

  81. Laurberg P, Wallin G, Tallstedt L, Abraham-Nordling M, Lundell G, Törring O. TSH-receptor autoimmunity in Graves’ disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol. 2008;158:69–75.

    Article  CAS  PubMed  Google Scholar 

  82. Wiersinga WM, Bartalena L. Epidemiology and prevention of Graves’ ophthalmopathy. Thyroid. 2002;12:855–60.

    Article  PubMed  Google Scholar 

  83. Järhult J, Rudberg C, Larsson E, Selvander H, Sjövall K, Winsa B, Rastad J, F a K. Graves’ disease with moderate-severe endocrine ophthalmopathy-long term results of a prospective, randomized study of total or subtotal thyroid resection. Thyroid. 2005;15:1157–64.

    Article  PubMed  Google Scholar 

  84. De Bellis A, Conzo G, Cennamo G, et al. Time course of Graves’ ophthalmopathy after total thyroidectomy alone or followed by radioiodine therapy: a 2-year longitudinal study. Endocrine. 2012;41:320–6.

    Article  PubMed  CAS  Google Scholar 

  85. Palit TK, Miller CC, Miltenburg DM. The efficacy of thyroidectomy for Graves’ disease: a meta-analysis. J Surg Res. 2000;90:161–5.

    Article  CAS  PubMed  Google Scholar 

  86. Barczyński M, Konturek A, Stopa M, Cichoń S, Richter P, Nowak W. Total thyroidectomy for benign thyroid disease: is it really worthwhile? Ann Surg. 2011;254:724–9. discussion 729–30

    Article  PubMed  Google Scholar 

  87. Feroci F, Rettori M, Borrelli A, Coppola A, Castagnoli A, Perigli G, Cianchi F, Scatizzi M. A systematic review and meta-analysis of total thyroidectomy versus bilateral subtotal thyroidectomy for Graves’ disease. Surgery. 2014;155:529–40.

    Article  PubMed  Google Scholar 

  88. Adam MA, Thomas S, Youngwirth L, Hyslop T, Reed SD, Scheri RP, Roman SA, Sosa JA. Is there a minimum number of thyroidectomies a surgeon should perform to optimize patient outcomes? Ann Surg. 2017;265:402–7.

    Article  PubMed  Google Scholar 

  89. Röher HD, Goretzki PE, Hellmann P, Witte J. Complications in thyroid surgery. Incidence and therapy. Chirurg. 1999;70:999–1010.

    Article  PubMed  Google Scholar 

  90. Abbas G, Dubner S, Heller KS. Re-operation for bleeding after thyroidectomy and parathyroidectomy. Head Neck. 2001;23:544–6.

    Article  CAS  PubMed  Google Scholar 

  91. Swee DS, Chng CL, Lim A. Clinical characteristics and outcome of thyroid storm: a case series and review of neuropsychiatric derangements in thyrotoxicosis. Endocr Pract. 2015;21:182–9.

    Article  Google Scholar 

  92. Erbil Y, Ozluk Y, Giriş M, Salmaslioglu A, Issever H, Barbaros U, Kapran Y, Ozarmağan S, Tezelman S. Effect of lugol solution on thyroid gland blood flow and microvessel density in the patients with Graves’ disease. J Clin Endocrinol Metab. 2007;92:2182–9.

    Article  CAS  PubMed  Google Scholar 

  93. Langley RW, Burch HB. Perioperative management of the thyrotoxic patient. Endocrinol Metab Clin N Am. 2003;32:519–34.

    Article  Google Scholar 

  94. Tsai WC, Pei D, Wang TF, Wu DA, Li JC, Wei CL, Lee CH, Chen SP, Kuo SW. The effect of combination therapy with propylthiouracil and cholestyramine in the treatment of Graves’ hyperthyroidism. Clin Endocrinol (Oxf). 2005;62:521–4.

    Article  CAS  Google Scholar 

  95. Panzer C, Beazley R, Braverman L. Rapid preoperative preparation for severe hyperthyroid Graves’ disease. J Clin Endocrinol Metab. 2004;89:2142–4.

    Article  CAS  PubMed  Google Scholar 

  96. Pagsisihan D, Andag-Silva A, Piores-Roderos O, Escobin MA. Rapid preoperative preparation for thyroidectomy of a severely hyperthyroid patient with graves’ disease who developed agranulocytosis. J ASEAN Fed Endocr Soc. 2015;30:48–52.

    Google Scholar 

  97. Edafe O, Antakia R, Laskar N, Uttley L, Balasubramanian SP. Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br J Surg. 2014;101:307–20.

    Article  CAS  PubMed  Google Scholar 

  98. Oltmann SC, Brekke AV, Schneider DF, Schaefer SC, Chen H, Sippel RS. Preventing postoperative hypocalcemia in patients with Graves disease: a prospective study. Ann Surg Oncol. 2015;22:952–8.

    Article  PubMed  Google Scholar 

  99. Genser L, Trésallet C, Godiris-Petit G, Li Sun Fui S, Salepcioglu H, Royer C, Menegaux F. Randomized controlled trial of alfacalcidol supplementation for the reduction of hypocalcemia after total thyroidectomy. Am J Surg. 2014;207:39–45.

    Article  PubMed  Google Scholar 

  100. Laurberg P, Buchholtz Hansen PE, Iversen E, Eskjaer Jensen S, Weeke J. Goitre size and outcome of medical treatment of Graves’ disease. Acta Endocrinol. 1986. https://doi.org/10.1530/acta.0.1110039.

    Article  CAS  PubMed  Google Scholar 

  101. Peters H, Fischer C, Bogner U, Reiners C, Schleusener H. Reduction in thyroid volume after radioiodine therapy of Graves’ hyperthyroidism: results of a prospective, randomized, multicentre study. Eur J Clin Investig. 1996;26:59–63.

    Article  CAS  Google Scholar 

  102. Bonnema SJ, Hegedüs L. Radioiodine therapy in benign thyroid diseases: effects, side effects, and factors affecting therapeutic outcome. Endocr Rev. 2012;33:920–80.

    Article  CAS  PubMed  Google Scholar 

  103. Kinuya S, Yoneyama T, Michigishi T. Airway complication occurring during radioiodine treatment for Graves’ disease. Ann Nucl Med. 2007;21:367–9.

    Article  PubMed  Google Scholar 

  104. Hegedüs L, Bonnema SJ. Approach to management of the patient with primary or secondary intrathoracic goiter. J Clin Endocrinol Metab. 2010;95:5155–62.

    Article  PubMed  CAS  Google Scholar 

  105. Neumann S, Place RF, Krieger CC, Gershengorn MC. Future prospects for the treatment of Graves’ hyperthyroidism and eye disease. Horm Metab Res. 2015;47:789–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaw-Ling Chng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chng, CL. (2018). Graves’ Disease. In: Parameswaran, R., Agarwal, A. (eds) Evidence-Based Endocrine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-1124-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1124-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1123-8

  • Online ISBN: 978-981-10-1124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics