Skip to main content

Inherited Thyroid Cancer

  • Chapter
  • First Online:
Evidence-Based Endocrine Surgery

Abstract

Thyroid cancer is common and has a steadily rising incidence [1]. Papillary thyroid cancer (PTC) is the most common histologic subtype, accounting for more than 90% of all thyroid cancers. Over 90% of thyroid cancers are sporadic, with less than 10% being familial [2]. Familial thyroid cancers can be divided into familial non-medullary thyroid cancers (FNMTC), or familial medullary thyroid cancers (FMTC) according to their cell of origin. Among FNMTC, about 5% are associated with defined syndromes and occur with a preponderance of non-thyroidal tumours [3] (see Diagram 14.1). The majority however are non-syndromic FNMTC. FMTC, on the other hand, is most commonly associated with multiple endocrine neoplasia (MEN). The presence of certain histological subtypes should also prompt consideration of familial thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140(4):317–22.

    Article  Google Scholar 

  2. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184–99.

    Article  CAS  Google Scholar 

  3. Nose V. Familial non-medullary thyroid carcinoma: an update. Endocr Pathol. 2008;19(4):226–40.

    Article  Google Scholar 

  4. Zhang Q, et al. Clinical analysis of familial nonmedullary thyroid carcinoma. World J Surg. 2016;40(3):570–3.

    Article  Google Scholar 

  5. Waite KA, Eng C. Protean PTEN: form and function. Am J Hum Genet. 2002;70(4):829–44.

    Article  CAS  Google Scholar 

  6. Pilarski R, et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16.

    Article  CAS  Google Scholar 

  7. Mester J, Eng C. Estimate of de novo mutation frequency in probands with PTEN hamartoma tumor syndrome. Genet Med. 2012;14(9):819–22.

    Article  CAS  Google Scholar 

  8. Tan MH, et al. A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet. 2011;88(1):42–56.

    Article  CAS  Google Scholar 

  9. Hall JE, Abdollahian DJ, Sinard RJ. Thyroid disease associated with Cowden syndrome: a meta-analysis. Head Neck. 2013;35(8):1189–94.

    Article  Google Scholar 

  10. Ngeow J, et al. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12):E2063–71.

    Article  CAS  Google Scholar 

  11. Smith JR, et al. Thyroid nodules and cancer in children with PTEN hamartoma tumor syndrome. J Clin Endocrinol Metab. 2011;96(1):34–7.

    Article  CAS  Google Scholar 

  12. Ni Y, et al. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet. 2012;21(2):300–10.

    Article  CAS  Google Scholar 

  13. Bennett KL, Mester J, Eng C. Germline epigenetic regulation of KILLIN in Cowden and Cowden-like syndrome. JAMA. 2010;304(24):2724–31.

    Article  CAS  Google Scholar 

  14. Orloff MS, et al. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet. 2013;92(1):76–80.

    Article  CAS  Google Scholar 

  15. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5(3):367–77.

    Article  CAS  Google Scholar 

  16. Septer S, et al. Thyroid cancer complicating familial adenomatous polyposis: mutation spectrum of at-risk individuals. Hered Cancer Clin Pract. 2013;11(1):13.

    Article  Google Scholar 

  17. Houlston RS, Stratton MR. Genetics of non-medullary thyroid cancer. QJM. 1995;88(10):685–93.

    CAS  PubMed  Google Scholar 

  18. Son EJ, Nose V. Familial follicular cell-derived thyroid carcinoma. Front Endocrinol (Lausanne). 2012;3:61.

    Google Scholar 

  19. Levy RA, et al. Cribriform-morular variant of papillary thyroid carcinoma: an indication to screen for occult FAP. Familial Cancer. 2014;13(4):547–51.

    Article  CAS  Google Scholar 

  20. Uchino S, et al. Age- and gender-specific risk of thyroid cancer in patients with familial adenomatous polyposis. J Clin Endocrinol Metab. 2016;101(12):4611–7.

    Article  CAS  Google Scholar 

  21. Groen EJ, et al. Extra-intestinal manifestations of familial adenomatous polyposis. Ann Surg Oncol. 2008;15(9):2439–50.

    Article  Google Scholar 

  22. Cetta F, et al. Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a European cooperative study. J Clin Endocrinol Metab. 2000;85(1):286–92.

    CAS  PubMed  Google Scholar 

  23. Pradhan D, Sharma A, Mohanty SK. Cribriform-morular variant of papillary thyroid carcinoma. Pathol Res Pract. 2015;211(10):712–6.

    Article  Google Scholar 

  24. Jarrar AM, et al. Screening for thyroid cancer in patients with familial adenomatous polyposis. Ann Surg. 2011;253(3):515–21.

    Article  Google Scholar 

  25. Correa R, Salpea P, Stratakis CA. Carney complex: an update. Eur J Endocrinol. 2015;173(4):M85–97.

    Article  CAS  Google Scholar 

  26. Stratakis CA. Carney complex: a familial lentiginosis predisposing to a variety of tumors. Rev Endocr Metab Disord. 2016;17(3):367–71.

    Article  CAS  Google Scholar 

  27. Rothenbuhler A, Stratakis CA. Clinical and molecular genetics of carney complex. Best Pract Res Clin Endocrinol Metab. 2010;24(3):389–99.

    Article  CAS  Google Scholar 

  28. Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86(9):4041–6.

    Article  CAS  Google Scholar 

  29. Slade I, et al. DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet. 2011;48(4):273–8.

    Article  CAS  Google Scholar 

  30. de Kock L, et al. Exploring the association between DICER1 mutations and differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2014;99(6):E1072–7.

    Article  Google Scholar 

  31. De Felice M, et al. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet. 1998;19(4):395–8.

    Article  Google Scholar 

  32. Gudmundsson J, et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet. 2009;41(4):460–4.

    Article  CAS  Google Scholar 

  33. Uchino S, et al. Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population. World J Surg. 2002;26(8):897–902.

    Article  Google Scholar 

  34. Wang X, et al. Endocrine tumours: familial nonmedullary thyroid carcinoma is a more aggressive disease: a systematic review and meta-analysis. Eur J Endocrinol. 2015;172(6):R253–62.

    Article  CAS  Google Scholar 

  35. Capezzone M, et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer. 2008;15(4):1075–81.

    Article  CAS  Google Scholar 

  36. Sadowski SM, et al. Prospective screening in familial nonmedullary thyroid cancer. Surgery. 2013;154(6):1194–8.

    Article  Google Scholar 

  37. Alsanea O, Clark OH. Familial thyroid cancer. Curr Opin Oncol. 2001;13(1):44–51.

    Article  CAS  Google Scholar 

  38. Marsh DJ, et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin Endocrinol. 1996;44(3):249–57.

    Article  CAS  Google Scholar 

  39. Santoro M, Melillo RM, Fusco A. RET/PTC activation in papillary thyroid carcinoma: European journal of endocrinology prize lecture. Eur J Endocrinol. 2006;155(5):645–53.

    Article  CAS  Google Scholar 

  40. Gimm O, et al. Mutation analysis reveals novel sequence variants in NTRK1 in sporadic human medullary thyroid carcinoma. J Clin Endocrinol Metab. 1999;84(8):2784–7.

    CAS  PubMed  Google Scholar 

  41. Raue F, Frank-Raue K. Genotype-phenotype correlation in multiple endocrine neoplasia type 2. Clinics (Sao Paulo). 2012;67(Suppl 1):69–75.

    Article  Google Scholar 

  42. Morrison PJ, Atkinson AB. Genetic aspects of familial thyroid cancer. Oncologist. 2009;14(6):571–7.

    Article  Google Scholar 

  43. Nose V. Familial thyroid cancer: a review. Mod Pathol. 2011;24(Suppl 2):S19–33.

    Article  CAS  Google Scholar 

  44. Eng C, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996;276(19):1575–9.

    Article  CAS  Google Scholar 

  45. American Thyroid Association Guidelines Task Force, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid. 2009;19(6):565–612.

    Article  Google Scholar 

  46. Clark OH. Controversies in familial thyroid cancer 2014. Ulus Cerrahi Derg. 2014;30(2):62–6.

    PubMed  PubMed Central  Google Scholar 

  47. Kebebew E, et al. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer. 2000;88(5):1139–48.

    Article  CAS  Google Scholar 

  48. Salehian B, Samoa R. RET gene abnormalities and thyroid disease: who should be screened and when. J Clin Res Pediatr Endocrinol. 2013;5(Suppl 1):70–8.

    Article  Google Scholar 

  49. Vriens MR, et al. Clinical features and genetic predisposition to hereditary nonmedullary thyroid cancer. Thyroid. 2009;19(12):1343–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Ngeow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, J., Ngeow, J. (2018). Inherited Thyroid Cancer. In: Parameswaran, R., Agarwal, A. (eds) Evidence-Based Endocrine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-1124-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1124-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1123-8

  • Online ISBN: 978-981-10-1124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics