Skip to main content

Familial Non-medullary Thyroid Carcinoma Syndrome (FNMTC) and Familial Syndromes Associated with Thyroid Cancer

  • Chapter
  • First Online:
Endocrine Surgery Comprehensive Board Exam Guide
  • 871 Accesses

Abstract

Familial non-medullary thyroid cancer (FNMTC) constitutes 3–9% of all thyroid cancer (TC) cases and is divided into syndromic and non-syndromic FNMTC. In syndromic FNMTC, patients are at risk of non-medullary thyroid cancer and multiple other tumors with syndrome-specific clinical features, and the susceptibility genes are known. In non-syndromic FNMTC, non-medullary thyroid cancer is the major feature of the disease. New data have emerged on the genetics, clinical characteristics, and outcomes of patients with FNMTC. This chapter will summarize emerging data regarding classifications and definitions of FNMTC, criteria for screening and surveillance in patients with FNMTC, evaluation of the extent of disease, candidate susceptibility genes, and pattern of inheritance in FNMTC. The aim is to provide guidance for managing patients with FNMTC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlumberger M. [Papillary and follicular thyroid carcinoma]. Ann Endocrinol (Paris). 2007;68(2–3):120–8.

    Google Scholar 

  2. Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal ML. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med. 2016;375(7):614–7.

    Article  PubMed  Google Scholar 

  3. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 2017;317(13):1338–48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moses W, Weng J, Kebebew E. Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid. 2011;21(4):367–71.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vriens MR, Suh I, Moses W, Kebebew E. Clinical features and genetic predisposition to hereditary nonmedullary thyroid cancer. Thyroid. 2009;19(12):1343–9.

    Article  CAS  PubMed  Google Scholar 

  6. Lamartina L, Grani G, Durante C, Filetti S, Cooper DS. Screening for differentiated thyroid cancer in selected populations. Lancet Diabetes Endocrinol. 2020;8(1):81–8.

    Article  PubMed  Google Scholar 

  7. Kebebew E. Hereditary non-medullary thyroid cancer. World J Surg. 2008;32(5):678–82.

    Article  PubMed  Google Scholar 

  8. Ammar SA, Alobuia WM, Kebebew E. An update on familial nonmedullary thyroid cancer. Endocrine. 2020;68(3):502–7.

    Article  CAS  PubMed  Google Scholar 

  9. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Richards ML. Familial syndromes associated with thyroid cancer in the era of personalized medicine. Thyroid. 2010;20(7):707–13.

    Article  PubMed  Google Scholar 

  11. Metzger R, Milas M. Inherited cancer syndromes and the thyroid: an update. Curr Opin Oncol. 2014;26(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  12. Dinarvand P, Davaro EP, Doan JV, Ising ME, Evans NR, Phillips NJ, et al. Familial adenomatous polyposis syndrome: an update and review of extraintestinal manifestations. Arch Pathol Lab Med. 2019;143(11):1382–98.

    Article  CAS  PubMed  Google Scholar 

  13. Jarrar AM, Milas M, Mitchell J, Laguardia L, O'Malley M, Berber E, et al. Screening for thyroid cancer in patients with familial adenomatous polyposis. Ann Surg. 2011;253(3):515–21.

    Article  PubMed  Google Scholar 

  14. Herraiz M, Barbesino G, Faquin W, Chan-Smutko G, Patel D, Shannon KM, et al. Prevalence of thyroid cancer in familial adenomatous polyposis syndrome and the role of screening ultrasound examinations. Clin Gastroenterol Hepatol. 2007;5(3):367–73.

    Article  PubMed  Google Scholar 

  15. Chenbhanich JA-O, Atsawarungruangkit A, Korpaisarn S, Phupitakphol T, Osataphan S, Phowthongkum P. Prevalence of thyroid diseases in familial adenomatous polyposis: a systematic review and meta-analysis. Familial Cancer. 2019;18(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  16. Perrier ND, van Heerden J, Goellner JR, Williams ED, Gharib H, Marchesa P, et al. Thyroid cancer in patients with familial adenomatous polyposis. World J Surg. 1998;22(7):738–42.

    Article  CAS  PubMed  Google Scholar 

  17. Cetta F, Montalto G, Gori M, Curia MC, Cama A, Olschwang S. Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a European cooperative study. J Clin Endocrinol Metab. 2000;85(1):286–92.

    CAS  PubMed  Google Scholar 

  18. Nicolson NG, Man J, Carling T. Advances in understanding the molecular underpinnings of adrenocortical tumors. Curr Opin Oncol. 2017;

    Google Scholar 

  19. Monachese MA-OX, Mankaney G, Lopez R, O'Malley M, Laguardia L, Kalady MF, et al. Outcome of thyroid ultrasound screening in FAP patients with a normal baseline exam. Familial Cancer. 2019;18(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  20. Liaw D, Marsh D, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  21. Milas M, Mester J, Metzger R, Shin J, Mitchell J, Berber E, et al. Should patients with Cowden syndrome undergo prophylactic thyroidectomy? Surgery. 2012;152(6):1201–10.

    Article  PubMed  Google Scholar 

  22. Tan MH, Jl M, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bubien V, Bonnet F, Brouste V, Hoppe S, Barouk-Simonet E, David A, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50(4):255–63.

    Article  CAS  PubMed  Google Scholar 

  24. Stratakis CA, Courcoutsakis NA, Abati A, Filie A, Doppman JL, Carney JA, et al. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). J Clin Endocrinol Metab. 1997;82(7):2037–43.

    Article  CAS  PubMed  Google Scholar 

  25. Carney JA, Lyssikatos C, Seethala RR, Lakatos P, Perez-Atayde A, Lahner H, et al. The spectrum of thyroid gland pathology in carney complex: the importance of follicular carcinoma. Am J Surg Pathol. 2018;42(5):587–94.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yokote K, Chanprasert S, Lee L, Eirich K, Takemoto M, Watanabe A, et al. WRN mutation update: mutation spectrum, patient registries, and translational prospects. Hum Mutat. 2017;38(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  27. Ishikawa Y, Sugano H, Matsumoto T, Furuichi Y, Miller RW, Goto M. Unusual features of thyroid carcinomas in Japanese patients with Werner syndrome and possible genotype-phenotype relations to cell type and race. Cancer. 1999;85(6):1345–52.

    Article  CAS  PubMed  Google Scholar 

  28. Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8(4):e59709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wémeau JL, Kopp P. Pendred syndrome. Best Pract Res Clin Endocrinol Metab. 2017;31(2):213–24.

    Article  PubMed  Google Scholar 

  30. Snabboon T, Plengpanich W, Saengpanich S, Sirisalipoch S, Keelawat S, Sunthornyothin S, et al. Two common and three novel PDS mutations in Thai patients with Pendred syndrome. J Endocrinol Investig. 2007;30(11):907–13.

    Article  CAS  Google Scholar 

  31. Yoshida A, Taniguchi S, Hisatome I, Royaux IE, Green ED, Kohn LD, et al. Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J Clin Endocrinol Metab. 2002;87(7):3356–61.

    Article  CAS  PubMed  Google Scholar 

  32. Camargo R, Limbert E, Gillam M, Henriques MM, Fernandes C, Catarino AL, et al. Aggressive metastatic follicular thyroid carcinoma with anaplastic transformation arising from a long-standing goiter in a patient with Pendred's syndrome. Thyroid. 2001;11(10):981–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol. 1997;17:177–202.

    Article  Google Scholar 

  34. Ulusoy E, Edeer-Karaca N, Özen S, Ertan Y, Gökşen D, Aksu G, et al. An unusual manifestation: papillary thyroid carcinoma in a patient with ataxia-telengiectasia. Turk J Pediatr. 2016;58(4):442–5.

    Article  PubMed  Google Scholar 

  35. Marsh DJ, Kum JB, Lunetta KL, Bennett MJ, Gorlin RJ, Ahmed SF, et al. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet. 1999;8(8):1461–72.

    Article  CAS  PubMed  Google Scholar 

  36. Eng C. The role of PTEN, a phosphatase gene, in inherited and sporadic nonmedullary thyroid tumors. Recent Prog Horm Res. 1999;54:441–52.

    CAS  PubMed  Google Scholar 

  37. Sloot YJE, Rabold K, Netea MG, Smit JWA, Hoogerbrugge N, Netea-Maier RT. Effect of PTEN inactivating germline mutations on innate immune cell function and thyroid cancer-induced macrophages in patients with PTEN hamartoma tumor syndrome. Oncogene. 2019;38(19):3743–55.

    Article  CAS  PubMed  Google Scholar 

  38. Tosur M, Brandt ML, Athanassaki ID, Rednam SP. Considerations for total thyroidectomy in an adolescent with PTEN mutation. Ther Adv Endocrinol Metab. 2018;9(9):299–301.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ngeow J, Mester J, Rybicki LA, Ni Y, Milas M, Eng C. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12):E2063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Daniell J, Plazzer JP, Perera A, Macrae F. An exploration of genotype-phenotype link between Peutz-Jeghers syndrome and STK11: a review. Familial Cancer. 2018;17(3):421–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wei S, LiVolsi VA, Brose MS, Montone KT, Morrissette JJ, Baloch ZW. STK11 mutation identified in thyroid carcinoma. Endocr Pathol. 2016;27(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  42. Jelsig AM, Qvist N, Sunde L, Brusgaard K, Hansen T, Wikman FP, et al. Disease pattern in Danish patients with Peutz-Jeghers syndrome. Int J Color Dis. 2016;31(5):997–1004.

    Article  CAS  Google Scholar 

  43. Rutter MM, Jha P, Schultz KA, Sheil A, Harris AK, Bauer AJ, et al. DICER1 mutations and differentiated thyroid carcinoma: evidence of a direct association. J Clin Endocrinol Metab. 2016;101(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  44. de Kock L, Sabbaghian N, Soglio DB, Guillerman RP, Park BK, Chami R, et al. Exploring the association between DICER1 mutations and differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2014;99(6):E1072–7.

    Article  PubMed  Google Scholar 

  45. Lee YA, Im SW, Jung KC, Chung EJ, Shin CH, Kim JI, et al. Predominant DICER1 pathogenic variants in pediatric follicular thyroid carcinomas. Thyroid. 2020;30(8):1120–31. https://doi.org/10.1089/thy.2019.0233.

    Article  PubMed  Google Scholar 

  46. Schultz KAP, Williams GM, Kamihara J, Stewart DR, Harris AK, Bauer AJ, et al. DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res. 2018;24(10):2251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boyce AM, Florenzano P, de Castro LF, Collins MT. Fibrous Dysplasia/McCune-Albright Syndrome. GeneReviews(®). 2015.

    Google Scholar 

  48. Collins MT, Sarlis NJ, Merino MJ, Monroe J, Crawford SE, Krakoff JA, et al. Thyroid carcinoma in the McCune-Albright syndrome: contributory role of activating Gs alpha mutations. J Clin Endocrinol Metab. 2003;88(9):4413–7.

    Article  CAS  PubMed  Google Scholar 

  49. Tessaris D, Corrias A, Matarazzo P, De Sanctis L, Wasniewska M, Messina MF, et al. Thyroid abnormalities in children and adolescents with McCune-Albright syndrome. Horm Res Paediatr. 2012;78(3):151–7.

    Article  CAS  PubMed  Google Scholar 

  50. Merchant N, Viau-Colindres JM, Hicks KA, Balazs AE, Wesson DE, Lopez ME, et al. McCune-Albright syndrome with unremitting hyperthyroidism at early age: management perspective for early thyroidectomy. Glob Pediatr Health. 2019;(6):2333794X19875153.

    Google Scholar 

  51. Malchoff CD, Sarfarazi M, Tendler B, Forouhar F, Whalen G, Joshi V, et al. Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J Clin Endocrinol Metab. 2000;85(5):1758–64.

    CAS  PubMed  Google Scholar 

  52. Charkes ND. On the prevalence of familial nonmedullary thyroid cancer in multiply affected kindreds. Thyroid. 2006;16(2):181–6.

    Article  PubMed  Google Scholar 

  53. Hemminki K, Eng C, Chen B. Familial risks for nonmedullary thyroid cancer. J Clin Endocrinol Metab. 2005;90(10):5747–53.

    Article  CAS  PubMed  Google Scholar 

  54. Malchoff CD, Malchoff DM. Familial nonmedullary thyroid carcinoma. Cancer Control. 2006;13(2):106–10.

    Article  PubMed  Google Scholar 

  55. Klubo-Gwiezdzinska J, Yang L, Merkel R, Patel D, Nilubol N, Merino MJ, et al. Results of screening in familial non-medullary thyroid cancer. Thyroid. 2017;27(8):1017–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ríos A, Rodríguez JM, Navas D, Cepero A, Torregrosa NM, Balsalobre MD, et al. Family screening in familial papillary carcinoma: the early detection of thyroid disease. Ann Surg Oncol. 2016;23(8):2564–70.

    Article  PubMed  Google Scholar 

  57. Rosario PW, Mineiro Filho AF, Prates BS, Silva LC, Lacerda RX, Calsolari MR. Ultrasonographic screening for thyroid cancer in siblings of patients with apparently sporadic papillary carcinoma. Thyroid. 2012;22(8):805–8.

    Article  PubMed  Google Scholar 

  58. Sadowski SM, He M, Gesuwan K, Gulati N, Celi F, Merino MJ, et al. Prospective screening in familial nonmedullary thyroid cancer. Surgery. 2013;154(6):1194–8.

    Article  PubMed  Google Scholar 

  59. El Lakis M, Giannakou A, Nockel PJ, Wiseman D, Gara SK, Patel D, et al. Do patients with familial nonmedullary thyroid cancer present with more aggressive disease? Implications for initial surgical treatment. Surgery. 2019;165(1):50–7.

    Article  PubMed  Google Scholar 

  60. Wang X, Cheng W, Li J, Su A, Wei T, Liu F, et al. Endocrine tumours: familial nonmedullary thyroid carcinoma is a more aggressive disease: a systematic review and meta-analysis. Eur J Endocrinol. 2015;172(6):R253–62.

    Article  CAS  PubMed  Google Scholar 

  61. Park YJ, Ahn HY, Choi HS, Kim KW, Park Do J, Cho BY. The long-term outcomes of the second generation of familial nonmedullary thyroid carcinoma are more aggressive than sporadic cases. Thyroid. 2012;22(4):356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Uchino S, Noguchi S, Kawamoto H, Yamashita H, Watanabe S, Shuto S. Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population. World J Surg. 2002;26(8):897–902.

    Article  PubMed  Google Scholar 

  63. Lee YM, Yoon JH, Yi O, Sung TY, Chung KW, Kim WB, et al. Familial history of non-medullary thyroid cancer is an independent prognostic factor for tumor recurrence in younger patients with conventional papillary thyroid carcinoma. J Surg Oncol. 2014;109(2):168–73.

    Article  PubMed  Google Scholar 

  64. Mazeh H, Benavidez J, Poehls JL, Youngwirth L, Chen H, Sippel RS. In patients with thyroid cancer of follicular cell origin, a family history of nonmedullary thyroid cancer in one first-degree relative is associated with more aggressive disease. Thyroid. 2012;22(1):3–8.

    Article  PubMed  Google Scholar 

  65. Tavarelli M, Russo M, Terranova R, Scollo C, Spadaro A, Sapuppo G, et al. Familial non-medullary thyroid cancer represents an independent risk factor for increased cancer aggressiveness: a retrospective analysis of 74 families. Front Endocrinol (Lausanne). 2015;6(117)

    Google Scholar 

  66. Robenshtok E, Tzvetov G, Grozinsky-Glasberg S, Shraga-Slutzky I, Weinstein R, Lazar L, et al. Clinical characteristics and outcome of familial nonmedullary thyroid cancer: a retrospective controlled study. Thyroid. 2011;21(1):43–8.

    Article  PubMed  Google Scholar 

  67. Pitoia F, Cross G, Salvai ME, Abelleira E, Niepomniszcze H. Patients with familial non-medullary thyroid cancer have an outcome similar to that of patients with sporadic papillary thyroid tumors. Arq Bras Endocrinol Metabol. 2011;55(3):219–23.

    Article  PubMed  Google Scholar 

  68. Tomsic J, He H, Akagi K, Liyanarachchi S, Pan Q, Bertani B, et al. A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci Rep. 2015;5(10566)

    Google Scholar 

  69. Ngan ES, Lang BH, Liu T, Shum CK, So MT, Lau DK, et al. A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J Natl Cancer Inst. 2009;101(3):162–75.

    Article  CAS  PubMed  Google Scholar 

  70. Cantara S, Capuano S, Formichi C, Pisu M, Capezzone M, Pacini F. Lack of germline A339V mutation in thyroid transcription factor-1 (TITF-1/NKX2.1) gene in familial papillary thyroid cancer. Thyroid Res. 2010;3(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gara SK, Jia L, Merino MJ, Agarwal SK, Zhang L, Cam M, Patel D, et al. Germline HABP2 mutation causing familial nonmedullary thyroid cancer. N Engl J Med. 2015;373:448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cantara S, Marzocchi C, Castagna MG, Pacini F. HABP2 G534E variation in familial non-medullary thyroid cancer: an Italian series. J Endocrinol Investig. 2017;40(5):557–60.

    Article  CAS  Google Scholar 

  73. Zhang T, Xing M. HABP2 G534E mutation in familial nonmedullary thyroid cancer. J Natl Cancer Inst. 2016;108(6):djv415.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kowalik A, Gąsior-Perczak D, Gromek M, Siołek M, Walczyk A, Pałyga I, et al. The p.G534E variant of HABP2 is not associated with sporadic papillary thyroid carcinoma in a Polish population. Oncotarget. 2017;8(35):58304–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sahasrabudhe R, Stultz J, Williamson J, Lott P, Estrada A, Bohorquez M, et al. The HABP2 G534E variant is an unlikely cause of familial non-medullary thyroid cancer. J Clin Endocrinol Metab. 2016;10(3):1098–103.

    Article  PubMed  Google Scholar 

  76. Wang Y, Liyanarachchi S, Miller KE, Nieminen TT, Comiskey DF Jr, Li W, et al. Identification of rare variants predisposing to thyroid cancer. Thyroid. 2019;29(7):946–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ye F, Gao H, Xiao L, Zuo Z, Liu Y, Zhao Q, et al. Whole exome and target sequencing identifies MAP2K5 as novel susceptibility gene for familial non-medullary thyroid carcinoma. Int J Cancer. 2019;144(6):1321–30.

    Article  CAS  PubMed  Google Scholar 

  78. Cirello V, Colombo C, Persani L, Fugazzola L. Absence of the MAP2K5 germline variants c.G961A and c.T1100C in a wide series of familial nonmedullary thyroid carcinoma Italian families. Int J Cancer. 2019;145(2):600.

    Article  CAS  PubMed  Google Scholar 

  79. Srivastava A, Kumar A, Giangiobbe S, Bonora E, Hemminki K, Försti A, et al. Whole genome sequencing of familial non-medullary thyroid cancer identifies germline alterations in MAPK/ERK and PI3K/AKT signaling pathways. Biomolecules. 2019;9(10):605. https://doi.org/10.3390/biom9100605.

    Article  CAS  PubMed Central  Google Scholar 

  80. Zhu J, Wu K, Lin Z, Bai S, Wu J, Li P, et al. Identification of susceptibility gene mutations associated with the pathogenesis of familial nonmedullary thyroid cancer. Mol Genet Genomic Med. 2019;7(12):e1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Mercedes Sadowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadowski, S.M. (2021). Familial Non-medullary Thyroid Carcinoma Syndrome (FNMTC) and Familial Syndromes Associated with Thyroid Cancer. In: Shifrin, A.L., Raffaelli, M., Randolph, G.W., Gimm, O. (eds) Endocrine Surgery Comprehensive Board Exam Guide. Springer, Cham. https://doi.org/10.1007/978-3-030-84737-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84737-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84736-4

  • Online ISBN: 978-3-030-84737-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics