Skip to main content

Spectroscopic Methodologies

  • Chapter
  • First Online:
Biophotonics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3756 Accesses

Abstract

Numerous viable optical spectroscopic methodologies are being implemented in biophotonics. Each spectroscopic discipline is progressively adopting more sophisticated photonics and optical fiber-based systems for delivering probing light to a tissue analysis site, for collecting light emitted from a specimen, and for returning this light to photodetection, recording, and analysis instruments. A key technological advance of spectroscopic methodologies is for rapid, accurate, and noninvasive in vivo detection and diagnosis of various health conditions. Examples of spectroscopic techniques used in biophotonics include fluorescence spectroscopy, fluorescent correlation spectroscopy, elastic scattering spectroscopy, diffuse correlation spectroscopy, Raman spectroscopy, surface-enhanced Raman scattering spectroscopy, coherent anti-Stokes Raman scattering spectroscopy, stimulated Raman scattering spectroscopy, photon correlation spectroscopy, Fourier transform infrared spectroscopy, and Brillouin scattering spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Richards-Kortum, E. Sevick-Muraca, Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47(10), 555–606 (1996)

    Article  ADS  Google Scholar 

  2. G. Keiser, F. Xiong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Opt. 19, 080902 (2014)

    Google Scholar 

  3. M. Olivo, R. Bhuvaneswari, I. Keogh, Advances in bio-optical imaging for the diagnosis of early oral cancer. Pharmaceutics (Special issue: Molecular Imaging) 3(3), 354–378 (2011)

    Google Scholar 

  4. A. Wax, M.G. Giacomelli, T.E. Matthews, M.T. Rinehart, F.E. Robles, Y. Zhu, Optical spectroscopy of biological cells. Adv. Opt. Photonics 4(3), 322–378 (2012)

    Article  Google Scholar 

  5. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  6. U. Kubitscheck, Fluorescence Microscopy: From Principles to Biological Applications (Wiley-Blackman, Weinheim, 2013)

    Book  Google Scholar 

  7. M. Olivo, J.H. Ho, C.Y. Fu, Advances in fluorescence diagnosis to track footprints of cancer progression in vivo. Laser Photonics Rev. 7(5), 646–662 (2013)

    Article  Google Scholar 

  8. Y. Engelborghs, A.J.W.G. Visser (eds.), Fluorescence Spectroscopy and Microscopy: Methods and Protocols (Springer, New York, 2014)

    Google Scholar 

  9. P.P. Mondal, A. Diaspro, Fundamentals of Fluorescence Microscopy (Springer, Dordrecht, 2014)

    Book  Google Scholar 

  10. S.C. Hovan, S. Howell, P.S.-H. Park, Förster resonance energy transfer as a tool to study photoreceptor biology. J. Biomed. Opt. 15(6), 067001 (2010)

    Article  ADS  Google Scholar 

  11. T. Förster, Energiewanderung und Fluoreszenz, Naturwissenschaften, 33(6), 166–175 (1946). Translation: Energy migration and fluorescence. J. Biomed. Opt. 17(1), 011002 (2012)

    Google Scholar 

  12. R.S. Knox, Förster’s resonance excitation transfer theory. J. Biomed. Opt. 17(1), 011003 (2012)

    Article  ADS  Google Scholar 

  13. W. Becker, The bh TCSPC Handbook, 6th edn. (Becker & Hickl, Berlin, 2015)

    Google Scholar 

  14. J.W. Borst, A.J.W.G. Visser, Topical review: fluorescence lifetime imaging microscopy in life sciences. Meas. Sci. Technol. 21, 102002 (2010)

    Article  ADS  Google Scholar 

  15. T. Dellwig, P.Y. Lin, F.J. Kao, Long-distance fluorescence lifetime imaging using stimulated emission. J. Biomed. Opt. 17(1), 011009 (2012)

    Article  ADS  Google Scholar 

  16. F.J. Kao, G. Deka, N. Mazumder, Cellular autofluroscence detection through FLIM/FRET microscopy, in The Current Trends in Optics and Photonics, ed. by C.-C. Lee (Springer, Dordrecht, Netherlands, 2015), pp. 471–482

    Google Scholar 

  17. K. Suhling, L.M. Hirvonen, J.A. Levitt, P.H. Chung, C. Tregidgo, A. Le Marois, D.A. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, S. Coelho, R. Henderson, N. Krstajic, Fluorescence lifetime imaging (FLIM): basic concepts and some recent developments. Med. Photonics 27, 3–40 (2015). (Review Article)

    Article  Google Scholar 

  18. S.T. Hess, S.H. Huang, A.A. Heikal, W.W. Webb, Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41, 697–705 (2002)

    Article  Google Scholar 

  19. R. Macháň, M. Hof, Recent developments in fluorescence correlation spectroscopy for diffusion measurements in planar lipid membranes. Int. J. Mol. Sci. 11, 427–457 (2010). (Review Article)

    Article  Google Scholar 

  20. P. Schwille, J. Ries, Principles and applications of fluorescence correlation spectroscopy (FCS), in Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation, ed. by B. Di Bartolo, J. Collins (Springer, Berlin, 2011), pp. 63–86

    Chapter  Google Scholar 

  21. Y. Tian, M.M. Martinez, D. Pappas, Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications. Appl. Spectrosc. 65, 115–124 (2011). (Review Article)

    Article  ADS  Google Scholar 

  22. L.N. Hillesheim, J.D. Müller, The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors. Biophys. J. 85, 1948–1958 (2003)

    Article  Google Scholar 

  23. C. Eggeling, S. Jäger, D. Winkler, P. Kask, Comparison of different fluorescence fluctuation methods for their use in FRET assays: Monitoring a protease reaction. Curr. Pharma. Biotechnol. 6, 351–371 (2005)

    Article  Google Scholar 

  24. T. Winkler, U. Kettling, A. Koltermann, M. Eigen, Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening. Proc. Natl. Acad. Sci. USA 96, 1375–1378 (1999)

    Article  ADS  Google Scholar 

  25. I.J. Bigio, J.R. Mourant, Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys. Med. Biol. 42, 803–814 (1997)

    Article  Google Scholar 

  26. X. Cheng, D.A. Boas, Diffuse optical reflection tomography with continuous-wave illumination. Opt. Express 3(3), 118–123 (1998)

    Article  ADS  Google Scholar 

  27. O.M. A’Amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, I.J. Bigio, Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment. Lasers Med. Sci. 28(5), 1323–1329 (2013)

    Article  Google Scholar 

  28. K.W. Calabro, I.J. Bigio, Influence of the phase function in generalized diffused reflectance models: review of current formalisms and novel observations. J. Biomed. Opt. 19(7), 075005 (2014)

    Article  ADS  Google Scholar 

  29. A. Douplik, S. Zanati, G. Saiko, C. Streutker, M. Loshchenov, D. Adler, S. Cho, D. Chen, M. Cirocco, N. Marcon, J. Fengler, B.C. Wilson, Diffuse reflectance spectroscopy in Barrett’s esophagus: developing a large field-of-view screening method discriminating dysplasia from metaplasia. J. Biophotonics 7(5), 304–311 (2014)

    Article  Google Scholar 

  30. B. Yu, A. Shah, V.K. Nagarajan, D.G. Ferris, Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe. Biomed. Opt. Express 5(3), 675–689 (2014)

    Article  Google Scholar 

  31. K. Vishwanath, K. Chang, D. Klein, Y.F. Deng, V. Chang, J.E. Phelps, N. Ramanulam, Portable, fiber-based, diffuse reflection spectroscopy (DRS) systems for estimating tissue optical properties. Appl. Spectrosc. 62, 206–215 (2011)

    Article  ADS  Google Scholar 

  32. J. Dong, R. Bi, J.H. Ho, P.S.P. Thong, K.C. Soo, K. Lee, Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator. J. Biomed. Opt. 17, 097004 (2012)

    Article  ADS  Google Scholar 

  33. Y. Shang, K. Gurley, G. Yu, Diffuse correlation spectroscopy (DCS) for assessment of tissue blood flow in skeletal muscle: recent progress. Anat. Physiol. 3(2), 128 (2013)

    Google Scholar 

  34. T. Durduran, A.G. Yodh, Diffuse correlation spectroscopy for noninvasive, microvascular cerebral blood flow measurement. NeuroImage 85, 51–63 (2014). (Review Article)

    Article  Google Scholar 

  35. E.M. Buckley, A.B. Parthasarathy, P.E. Grant, A.G. Yodh, M.A. Franceschini, Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects. Neurophotonics 1(1), 011009 (2014)

    Article  Google Scholar 

  36. A. Downes, A. Elfick, Raman spectroscopy and related techniques in biomedicine. Sensors 10, 1871–1889 (2010). (Review Article)

    Article  Google Scholar 

  37. Y. Huang, P.P. Shum, F. Luan, M. Tang, Raman-assisted wavelength conversion in chalcogenide waveguides. IEEE J. Sel. Topics Quantum Electron. 18(2), 646–653 (2012)

    Article  Google Scholar 

  38. C. Krafft, B. Dietzek, M. Schmitt, J. Popp, Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. J. Biomed. Opt. 17, 040801 (2012). (Review article)

    Article  ADS  Google Scholar 

  39. P. Matousek, N. Stone, Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. J. Biophotonics 6(1), 7–19 (2013). (Review Article)

    Article  Google Scholar 

  40. W. Wang, J. Zhao, M. Short, H. Zeng, Real-time in vivo cancer diagnosis using Raman spectroscopy. J. Biophotonics 8(7), 527–545 (2015). (Review Article)

    Article  Google Scholar 

  41. K.W. Kho, C.Y. Fu, U.S. Dinish, M. Olivo, Clinical SERS: are we there yet? J. Biophotonics 4(10), 667–684 (2011). (Review Article)

    Article  Google Scholar 

  42. D. Cialla, A. Maerz, R. Boehme, F. Theil, K. Weber, M. Schmitt, J. Popp, Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403(1), 27–54 (2012)

    Article  Google Scholar 

  43. U.S. Dinish, G. Balasundaram, Y.T. Chang, M. Olivo, Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7(11–12), 956–965 (2014)

    Article  Google Scholar 

  44. C. Yuen, Q. Liu, Towards in vivo intradermal surface enhanced Raman scattering (SERS) measurements: silver coated microneedle based SERS probe. J. Biophotonics 7(9), 683–689 (2014)

    Article  Google Scholar 

  45. A. Shiohara, Y. Wang, L.M. Liz-Marzan, Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol. C: Photochem. Rev. 21, 2–25 (2014). (Review Article)

    Article  Google Scholar 

  46. U.S. Dinish, G. Balasundaram, Y.T. Chang, M. Olivo, Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4, 4075 (2014)

    Article  ADS  Google Scholar 

  47. G.S. He, Nonlinear Optics and Photonics (Oxford University Press, Oxford, 2015)

    Google Scholar 

  48. H. Tu, S.A. Boppart, Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. J. Biophotonics 7(1–2), 9–22 (2014). (Review article)

    Article  Google Scholar 

  49. A.F. Pegoraro, A.D. Slepkov, A. Ridsdale, D.J. Moffatt, A. Stolow, Hyperspectral multimodal CARS microscopy in the fingerprint region. J. Biophotonics 7(1–2), 49–58 (2014)

    Article  Google Scholar 

  50. R. Pecora (ed.), Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Springer, New York, 1985)

    Google Scholar 

  51. M. Plewicki, R. Levis, Femtosecond stimulated Raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe. J. Opt. Soc. Am. B 25(10), 1714–1719 (2008)

    Article  ADS  Google Scholar 

  52. F.-K. Lu, M. Ji, D. Fu, X. Ni, C.W. Freudiger, G. Holtom, X.S. Xie, Multicolor stimulated Raman scattering microscopy. Mol. Phys. 110(15–16), 1927–1932 (2012)

    Article  ADS  Google Scholar 

  53. C.W. Freudiger, W. Yang, G.R. Holton, N. Peyghambarian, X.S. Xie, K.Q. Kieu, Stimulated Raman scattering microscopy with a robust fibre laser source. Nat. Photonics 8(2), 153–159 (2014)

    Article  ADS  Google Scholar 

  54. M. Filella, J. Zhang, M.E. Newman, J. Buffle, Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Aquat. Colloid Surf. Chem. 120(1–3), 27–46 (1997)

    Article  Google Scholar 

  55. W. Tscharnuter, Photon correlation spectroscopy in particle sizing, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, New York, 2013)

    Google Scholar 

  56. P.R. Griffiths, J.A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd edn. (Wiley, Hoboken, NJ, 2007)

    Book  Google Scholar 

  57. C. Hughes, M. Brown, G. Clemens, A. Henderson, G. Monjardez, N.W. Clarke, P. Gardner, Assessing the challenges of Fourier transform infrared spectroscopic analysis of blood serum. J. Biophotonics 7(3–4), 180–188 (2014)

    Article  Google Scholar 

  58. J. Cao, E.S. Ng, D. McNaughton, E.G. Stanley, A.G. Elefanty, M.J. Tobin, P. Heraud, Fourier transform infrared microspectroscopy reveals unique phenotypes for human embryonic and induced pluripotent stem cell lines and their progeny. J. Biophotonics 7(10), 767–781 (2014)

    Article  Google Scholar 

  59. G. Scarcelli, S.H. Yun, Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photonics 2(1), 39–43 (2008)

    Article  ADS  Google Scholar 

  60. S. Reiß, G. Burau, O. Stachs, R. Guthoff, H. Stolz, Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens. Biomed. Opt. Express 2(8), 2144–2159 (2011)

    Article  Google Scholar 

  61. Z. Steelman, Z. Meng, A.J. Traverso, V.V. Yakovlev, Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis. J. Biophoton. 8(5), 408–414 (2015)

    Article  Google Scholar 

  62. Z. Meng, V.V. Yakovlev, Brillouin spectroscopy characterizes microscopic viscoelasticity associated with skin injury. In: Proceedings of SPIE 9321, paper 93210C, Photonics West, San Francisco, 5 Mar 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Keiser, G. (2016). Spectroscopic Methodologies. In: Biophotonics. Graduate Texts in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0945-7_9

Download citation

Publish with us

Policies and ethics